BMD Series

Permanent Magnet AC Synchronous Motors
Index

5 Focus on synchronous servomotors

Servomotor references
6 Standard and Directives
7 Symbols and Unit of Measures
8 Terms and Definition
10 Rating Plates
11 Selecting the Servomotor
14 Degree of Protection

Series overview
15 Bonfiglioli Permanent Magnet Synchronous Servomotor Range
16 Product Designation

Mechanical data
18 Coupling Dimensions
19 Mechanical Tolerances
20 Shaft Loads

Ratings and drawings
22 BMD 65
24 BMD 82
26 BMD 102
28 BMD 118
30 BMD 145
32 BMD 145 with Force Ventilation Option
34 BMD 170
36 BMD 145 with Force Ventilation Option
38 Torque-speed characteristics

Options
46 Feedback Devices
50 Thermal Protection
50 Electromechanical Holding Brake
51 Additional Inertia feature
51 Forced Ventilation
53 Connections and Cables
62 Servo gearheads

68 Bonfiglioli Worldwide Presence
Focus on our synchronous servomotors

These permanent magnet AC synchronous servomotors are ideal for any type of automatic machinery in particular applications with high dynamic requirements. They are particularly suited to typical applications in plastic and metal machining, packaging, food and beverage processing, winding and textile industries.

The dimensions of the motor are drastically reduced, with considerable advantages in terms of torque density, overall dimensions and dynamic performance. Thanks to the high quality of the neodymium iron boron rare-earth magnets, performance are maximized in terms of very high accelerations and withstand high overloads without risk of demagnetization of the magnets.

The motors are available in six frames covering a stall torque range between 0.85 ÷ 45 Nm with natural cooling and up to 60 Nm with forced ventilation.

These brushless sinusoidal motors are designed as standard for a three phase power supply, 230Vac and 400Vac. BMD motor series are manufactured using class F insulation materials. The standard cooling method is free ventilation IC410. As option, the forced ventilation IC416 is available only for the size BMD 145 and BMD 170.

Since each servomotor has a protective temperature sensor (PTC, KTY or PT100) embedded in the motor windings, operating temperature is constantly acquired and monitored by the drive to prevent all risks of damage to the motor irrespective of operating conditions. An optional electromechanical holding brake is available for all models. Brake operation is controlled entirely by the frequency inverter.

BMD motors are optionally available with an external additional flywheel mass to face the machine inertia.

BMD series are available with degree of protection IP65 (standard) and IP67 (optional).

The following feedback devices are available:
- Resolver with excitation frequency 8 and 10 kHz
- Single turn absolute SinCos interface
- Single turn and Multi-turn: Hiperface and EnDAT protocols supported
- No feedback versions (specific control algorithms with sensorless servo drive are required).

BMD Series servomotors are controlled in speed and/or torque by a suitable electronic servo drive. The servo drive therefore constitutes a fundamental part of the actuator and requires perfect synchronization with it in order to achieve optimum performance.

The combination of BMD servomotors with frequency inverters from Bonfiglioli inverters ensures the perfect control of the motor in order to optimise the performance according to the machine requirements.
Standards and directives

BMD motors are manufactured in accordance with applicable standards and Directive listed in the following.

STANDARD

- **IEC 60034-1, EN 60034-1**
 Rotating electrical machines
 Part 1: Rating and performance

- **IEC 60034-2-3**
 Rotating electrical machines
 Part 2-3: Specific test methods for determining losses and efficiency of converter-fed AC motor

- **IEC 60034-5, EN 60034-5**
 Rotating electrical machines
 Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification

- **IEC 60034-6, EN 60034-6**
 Rotating electrical machines
 Part 6: Methods of cooling (IC Code)

- **IEC 60034-8, EN 60034-8**
 Rotating electrical machines
 Part 8: Terminal markings and direction of rotation

- **IEC 60034-14, IEC 60034-14**
 Rotating electrical machines
 Part 14: Mechanical vibration - Measurement, evaluation and limits of vibration severity

- **IEC TS 60034-25**
 Rotating electrical machines
 Part 25: Guidance for the design and performance of a.c. motors specifically designed for converter supply

- **IEC 60072-1**
 Dimensions and output series for rotating electrical machines - Part 1

DIRECTIVES

- **Low Voltage Directive: 2014/35/EU**

 The BMD servomotors series comply with UL/CSA standards for the North American market (UL file number E358266).

- **UL 1004-1**
 Rotating Electrical Machines
 General Requirements

- **UL 1004-6**
 Servo and Stepper Motors

- **CSA C22.2 No. 100**
 Motors and Generators
Symbols and units of measure

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>U.M.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2p</td>
<td>[-]</td>
<td>Number of poles</td>
</tr>
<tr>
<td>dT</td>
<td>[K]</td>
<td>Winding temperature rise</td>
</tr>
<tr>
<td>fH</td>
<td>[-]</td>
<td>Altitude adjustment factor</td>
</tr>
<tr>
<td>fn</td>
<td>[Hz]</td>
<td>Rated frequency</td>
</tr>
<tr>
<td>fT</td>
<td>[-]</td>
<td>Temperature adjustment factor</td>
</tr>
<tr>
<td>I0</td>
<td>[A]</td>
<td>Stall RMS current</td>
</tr>
<tr>
<td>Ib</td>
<td>[A]</td>
<td>Brake DC current</td>
</tr>
<tr>
<td>Imax</td>
<td>[A]</td>
<td>Max RMS current</td>
</tr>
<tr>
<td>Ie</td>
<td>[A]</td>
<td>Rated RMS current</td>
</tr>
<tr>
<td>Jb</td>
<td>[Kgm² ∙ 10⁻⁴]</td>
<td>Brake moment of inertia</td>
</tr>
<tr>
<td>Jm</td>
<td>[Kgm² ∙ 10⁻⁴]</td>
<td>Motor moment of inertia</td>
</tr>
<tr>
<td>Ke</td>
<td>[mV min⁻¹]</td>
<td>Back EMF constant phase-phase</td>
</tr>
<tr>
<td>Kt</td>
<td>[NmVA]</td>
<td>Torque constant</td>
</tr>
<tr>
<td>Lpp</td>
<td>[mH]</td>
<td>Stator phase-phase inductance</td>
</tr>
<tr>
<td>Ms</td>
<td>[Nm]</td>
<td>Stall torque</td>
</tr>
<tr>
<td>Mb</td>
<td>[Nm]</td>
<td>Brake torque</td>
</tr>
<tr>
<td>mb</td>
<td>[kg]</td>
<td>Brake mass</td>
</tr>
<tr>
<td>MCOU</td>
<td>[Nm]</td>
<td>Equivalent torque</td>
</tr>
<tr>
<td>Mmax</td>
<td>[Nm]</td>
<td>Max torque</td>
</tr>
<tr>
<td>m0</td>
<td>[kg]</td>
<td>Motor mass without brake/ flywheel</td>
</tr>
<tr>
<td>M</td>
<td>[Nm]</td>
<td>Rated torque</td>
</tr>
<tr>
<td>n0</td>
<td>[min⁻¹]</td>
<td>Rated speed</td>
</tr>
<tr>
<td>Pb</td>
<td>[W]</td>
<td>Brake electrical power at 20°C</td>
</tr>
<tr>
<td>Pn</td>
<td>[kW]</td>
<td>Rated power</td>
</tr>
<tr>
<td>Rpp</td>
<td>[Ω]</td>
<td>Stator phase-phase resistance at 20°C</td>
</tr>
<tr>
<td>t1</td>
<td>[ms]</td>
<td>Brake engaging time</td>
</tr>
<tr>
<td>t2</td>
<td>[ms]</td>
<td>Brake relase time</td>
</tr>
<tr>
<td>Vb</td>
<td>[V]</td>
<td>Brake DC voltage</td>
</tr>
<tr>
<td>Vn</td>
<td>[V]</td>
<td>Rated voltage</td>
</tr>
<tr>
<td>ΔJ</td>
<td>[Kgm² ∙ 10⁻⁴]</td>
<td>Inertia increase with brake/flywheel</td>
</tr>
<tr>
<td>ΔmM</td>
<td>[kg]</td>
<td>Mass increase with brake/flywheel</td>
</tr>
<tr>
<td>τel</td>
<td>[ms]</td>
<td>Electric time constant</td>
</tr>
<tr>
<td>τtherm</td>
<td>[min]</td>
<td>Thermal time constant</td>
</tr>
</tbody>
</table>

Unless otherwise specified, all dimensions are expressed in millimeters.
Terms and definitions

Back EMF constant \([K_e]\): is the relationship between the phase-to-phase RMS motor back EMF terminal voltage \((V_{AC})\) and the corresponding shaft rotational speed. It is typically computed as the RMS value of line voltage at speed of 1 min\(^{-1}\) with a winding temperature of 20°C.

Duty type S1: Operation at constant load maintained for sufficient time to allow the machine to reach thermal equilibrium.

Duty type S3: sequence of identical duty cycles, each including a time of operation at constant load and a time de-energized and at rest. If not specified the cycle time is fixed equal to 10 minutes.

Electric time constant \([\tau_{el}]\): is the time taken for the current to reach 63.2% of its steady state value when a step input voltage is applied while the rotor is stationary. Calculated by dividing the winding phase-to-phase inductance \((L_{pp})\) by the winding phase-to-phase resistance \((R_{pp})\) at 20°C.

\[
\tau_{el} = \frac{L_{pp}}{R_{pp}}
\]

Max current \([I_{max}]\): is the current used to produce the max torque \((M_{max})\). It is the current limit of the machine, and if exceeded, even for a short period, it may happen an irreversible damage of the machine.

Max torque \([M_{max}]\): is the absolute maximum torque that can be produced by a servomotor for a short time.

Rated current \([I_r]\): is the RMS current to produce the rated torque \((M_r)\).

Rated frequency \([f_r]\): is the frequency of the fundamental component of the output voltage corresponding at the rated speed \((n_r)\) according to the following equation where \(p\) is the pole pairs.

\[
f_r = \frac{p \cdot n_r}{60}
\]
Terms and definitions

Rated power [P_n]: is the mechanical power available at shaft at rated speed n_r.

\[P_n = \frac{2\pi \cdot M_n \cdot n_r}{60} \]

Rated speed [n_r]: is the speed at which the motor has been designed to operate with a reasonable level of control, in terms of overload and overspeed.

Rated torque [M_n]: is the thermally permissible continuous torque for S1 duty at the rated motor speed (n_r). It is normally less than the standstill torque (M_0) due to rotational losses (iron losses, friction losses…).

Standstill current [I_0]: is the RMS current to produce the standstill torque (M_0).

Standstill torque [M_0]: is the thermal limit torque for S1 duty produced when the motor runs at zero speed.

Thermal equilibrium: is the state reached when the temperature rise of the several parts of the machine do not vary by more than a gradient of 2 K per hour.

Thermal time constant [τ_{therm}]: is the time for the temperature to reach 63.2% of this final value between the motor housing and the ambient after a step-wise current change.

Torque constant [K_t]: is the phase RMS current to torque transfer ratio at standstill condition. It is quoted at rated motor winding temperature in steady state condition (thermal equilibrium – S1 duty cycle).

Winding temperature rise [dT]: is the temperature rise, in specified service conditions, of the motor windings above the maximum ambient reference temperature.
Rating plates

In accordance with IEC 60034-1, the motor rating plate summarizes the motor rating including the approximate total weight. Example of rating plate and fields description are reported hereafter.

Fields:
1) Product designation
2) Product code
3) Stall torque
4) Nominal torque
5) Nominal voltage
6) Stall current
7) Nominal current
8) Nominal speed
9) Insulation class
10) Degree of protection
11) Total weight
12) Motor mounting
13) Number of poles
14) Nominal brake voltage (1)
15) Nominal brake torque (1)
16) Nominal brake current (1)
17) UL certification logo (2)
18) Serial number
19) Serial number as barcode

(1) Only for brake motors (F24 option)
(2) Only for motors with CUS option

The fan unit data are summarized in a dedicated rating plate. Example of rating plate and fields description are reported hereafter.

Fields:
1) Product code
2) Nominal voltage
3) Nominal power
4) Degree of protection
5) Product code as barcode

Example of BMD rating plate:

Example of fan unit rating plate:
Selecting the servomotor

(a) Equivalent torque: $M_{EQU} \quad \text{[Nm]}$

\[M_{EQU} = \frac{M_{11} \cdot t_1 + M_{12} \cdot t_2 + \ldots + M_{1n} \cdot t_n}{t_1 + t_2 + \ldots + t_n} \]

(b) Temperature adjusting factor: f_T

(c) Altitude adjustment factor: f_H
Selecting the servomotor

START

From load cycle determine:
Max torque and relative speed
Max speed and relative torque

Select motor size and rated speed

All working points of the load cycle are below the motor limit curve?

YES

The motor has the correct inertia maching for the application?

YES

Calculate M_{eq}

(b) Calculate f_i

(c) Calculate f_u

$M_n * f_i * f_u > M_{eq}$

NO

Select a bigger motor size

YES

NO

Increase the rated speed or/and select a bigger motor size

NO

If the application need higher inertia try to add the F1 option (additional inertia) or if is not sufficient select a bigger motor size

END
Feedback selection

- **Angular accuracy**
 - Speed accuracy
 - NO
 - YES
 - Angular and Speed accuracy

- **Base**
 - Sensorless (No feedback)
 - Resolver
 - Capacitive Absolute Encoder

- **Medium**
 - Optical and Inductive Absolute encoder

- **High**

Interface
- Hiperface
- EnDat
- Hiperface
- SinCos

Feedback option
- SEN
- RES1
- RES2
- ENB5
- ENB6
- ENB1
- ENB2
- ENB8
- ENB3
- ENB4
- ENB7

Periods per revolution
- 1
- 1
- 16
- 16
- 512
- 512
- 1024
- 1024
- 2048
- 2048

Resolution available to position loop
- 12 bits
- 12 bits
- 9 bits
- 9 bits
- 13 bits
- 13 bits
- 19 bits
- 19 bits
- 12 bits
- 12 bits
- 12 bits
- 12 bits

Multi turn resolution
- 12 bits
- 12 bits

1) Only for size BMD 65
2) For the sizes from BMD 82 to BMD 170
3) The information is supplied by the feedback device manufacturer. The values may change when mounted into motor and connected to a drive.
4) The output from the resolver is analog output. The resolution of the system is also determined by the analog to digital converter used. This resolution is obtained when used with the EM-RES-01/02 acquisition module.
5) The output is analog and the resolution of the system is also determined by the analog to digital converter used. This resolution is obtained when used with the EM-ABS-01 acquisition module.

Please check the compatibility with our Motion Control with our Technical team or by consulting the Motion Control catalogue.
Degree of protection

BMD motors are manufactured in protection class IP65 or IP67 by selecting the basic variant "degree of protection" in the designation.

In accordance with IEC 60034-5:

<table>
<thead>
<tr>
<th>IP 6 5</th>
<th>Degree of protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not protected</td>
</tr>
<tr>
<td>1</td>
<td>Protected against extraneous solid bodies having Ø ≥ 50 mm</td>
</tr>
<tr>
<td>2</td>
<td>Protected against extraneous solid bodies having Ø ≥ 12.5 mm</td>
</tr>
<tr>
<td>3</td>
<td>Protected against extraneous solid bodies having Ø ≥ 2.5 mm</td>
</tr>
<tr>
<td>4</td>
<td>Protected against extraneous solid bodies having Ø ≥ 1.0 mm</td>
</tr>
<tr>
<td>5</td>
<td>Protected against dust</td>
</tr>
<tr>
<td>6</td>
<td>No dust ingress</td>
</tr>
</tbody>
</table>
The Bonfiglioli permanent magnet synchronous motors are available in six sizes with stall torque comprises between 0.85 ÷ 60 Nm.

Product Line Up
- Competitive technology
- Low inertia
- Highest dynamics
- High torque density
- Precision
- Compact design

A brief overview of the available combinations of the basic variants such as motor size, motor stall torque, nominal voltage and nominal speed is reported in the following table.

BMD series

Stall Torque distribution

<table>
<thead>
<tr>
<th></th>
<th>BMD 65</th>
<th>BMD 82</th>
<th>BMD 102</th>
<th>BMD 118</th>
<th>BMD 145</th>
<th>BMD 170</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>0.85</td>
<td>1.7</td>
<td>2.2</td>
<td>3.2</td>
<td>4.4</td>
<td>5.6</td>
</tr>
<tr>
<td>400 V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1600 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BMD 65</th>
<th>BMD 82</th>
<th>BMD 102</th>
<th>BMD 118</th>
<th>BMD 145</th>
<th>BMD 170</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>14</td>
<td>10.2</td>
<td>14</td>
<td>22</td>
<td>21.5(1)</td>
<td>27.5(1)</td>
</tr>
<tr>
<td>230 V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1600 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BMD 65</th>
<th>BMD 82</th>
<th>BMD 102</th>
<th>BMD 118</th>
<th>BMD 145</th>
<th>BMD 170</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5</td>
<td>21.5</td>
<td>16.8</td>
<td>22</td>
<td>34</td>
<td>44(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>400 V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1600 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BMD 65</th>
<th>BMD 82</th>
<th>BMD 102</th>
<th>BMD 118</th>
<th>BMD 145</th>
<th>BMD 170</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.5</td>
<td>27.5</td>
<td>22</td>
<td>34</td>
<td>44(1)</td>
<td>45(1)</td>
<td>60(1)</td>
</tr>
<tr>
<td>400 V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1600 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5500 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6000 rpm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

(1) Motor with forced ventilation option
Product designation of Bonfiglioli servomotors

BASIC VARIANTS

<table>
<thead>
<tr>
<th>Series</th>
<th>Motor size</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD</td>
<td>65, 82, 102, 118, 145, 170</td>
</tr>
</tbody>
</table>

Shaft Keyway
- **K**: with key
- **NK**: without key

Shaft Diameter
- **9**: size 65
- **11**: size 65, 82
- **14**: size 82
- **19**: size 82, 102, 118, 145
- **24**: size 102, 118, 145, 170
- **28**: size 118, 145, 170
- **32**: size 170

Flange
- **63**: size 65
- **75**: size 65
- **100**: size 82, 102
- **115**: size 82, 102
- **130**: size 118
- **130S**: size 118
- **165**: size 118, 145, 170

Motor Rated Speed
- **1600** (min⁻¹)
- **3000** (min⁻¹)
- **4500** (min⁻¹)
- **5500** (min⁻¹)
- **6000** (min⁻¹)

Motor Stall Torque
- **0.85** (Nm) size 65
- **1.7** (Nm) size 65
- **2.2** (Nm) size 65
- **3.2** (Nm) size 82
- **4.4** (Nm) size 82
- **4** (Nm) size 102
- **7.2** (Nm) size 102
- **9.6** (Nm) size 102
- **5.6** (Nm) size 118
- **10.2** (Nm) size 118
- **14** (Nm) size 118
- **16.8** (Nm) size 145
- **22** (Nm) size 145
- **34** (Nm) size 170
- **45** (Nm) size 170

Motor AC Voltage
- **230**
- **400**

Degree of Protection
- **65**: IP65
- **67**: IP67
Optional Variants

<table>
<thead>
<tr>
<th>PTC</th>
<th>RES1</th>
<th>P1</th>
<th>S1</th>
<th>F24</th>
<th>CUS</th>
<th>V1R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brake/Flywheel
- (blank): no brake nor flywheel (default)
- F24: brake 24 Vdc
- F1: additional flywheel / inertia

Feedback Device
- RES1: 2 poles resolver 8 kHz
- RES2: 2 poles resolver 10 kHz
- ENB1: Optical absolute encoder EnDat interface Single Turn
- ENB2: Optical absolute encoder EnDat interface Multi Turn
- ENB3: Optical absolute encoder Hiperface interface Single Turn
- ENB4: Optical absolute encoder Hiperface interface Multi Turn
- ENB5: Capacitive absolute encoder Hiperface interface Single Turn
- ENB6: Capacitive absolute encoder Hiperface interface Multi Turn
- ENB7: Optical SinCos absolute encoder Single Turn
- ENB8: Inductive absolute encoder EnDat interface Multi Turn
- SEN: Sensorless

Thermal Protection
- PTC: Thermistor PTC 150
- KTY: Silicon sensor type KTY84-130
- TC1: Platinium sensor PT1000

Power Connector
- P1: Angled rotatable receptacle, with plug
- P1N: Angled rotatable receptacle, without plug
- P2: Cable with flying leads, without connector
- P3: Straight receptacle, with plug
- P3N: Straight receptacle, without plug

Signal Connector
- (blank): Sensorless version, no feedback device
- S1: Angled rotatable receptacle, with plug
- S1N: Angled rotatable receptacle, without plug
- S2: Cable with flying leads, without connector
- S2C: Cable with SubD connector
- S3: Straight receptacle, with plug
- S3N: Straight receptacle, without plug

Forced Ventilation
- (blank): no forced ventilation (default)
- V1R: 24V DC IP 54 angled rotatable receptacle
- V1S: 24V DC IP 54 straight receptacle
- V2R: 230V AC IP 54 angled rotatable receptacle
- V2S: 230V AC IP 54 straight receptacle

Certified Execution
- (blank): CE
- CUS: UL

Notes:
1. M flange dimension, see page 16
2. For available motor AC voltage and speed combinations refer to general overview of page 15
3. Not available for motor size BMD 65
4. For available motor AC voltage and speed combinations refer to page 51. Not compatible with UL certification (CUS option).
5. Standard length 1 meter, for different lengths please contact us

Please check the compatibility with our Motion Control with our Technical team or by consulting the Motion Control catalogue.
The coupling dimensions include both, flange and shaft that are univocally defined by catalogue variants. The flanges and the shafts of BMD are described by fixed geometrics according to standard IEC 60072-1.

According to IEC 60072-1, the interface geometry is defined by quantities D, E, P, M, N, S showed in the following drawing whose numerical values (mm) depend on motor size.

<table>
<thead>
<tr>
<th>SERVOMOTORS</th>
<th>BMD65</th>
<th>BMD82</th>
<th>BMD102</th>
<th>BMD118</th>
<th>BMD145</th>
<th>BMD170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft diameter x shaft length</td>
<td>DxE</td>
<td>9x20</td>
<td>11x23</td>
<td>11x23</td>
<td>14x30</td>
<td>19x40</td>
</tr>
<tr>
<td>Flange square</td>
<td>P</td>
<td>65</td>
<td>65</td>
<td>82</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>Flange pitch holes diameter</td>
<td>M</td>
<td>63</td>
<td>75</td>
<td>100</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>Diameter of the spigot</td>
<td>N</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>Fixing holes diameters</td>
<td>S</td>
<td>5.8</td>
<td>5.8</td>
<td>6.5</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:
(1) Flange variant 130S
Mechanical tolerances

Dimensions and tolerances of shaft extension, key and flange are in accordance with IEC 60072-1. Shaft extension features an axial threaded hole in accordance with UNI 3221, DIN 332. Tolerances of the different parts are reported in the table.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>DIMENSIONS</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft end D</td>
<td>Ø 9 - 28</td>
<td>j6</td>
</tr>
<tr>
<td></td>
<td>Ø 32</td>
<td>k6</td>
</tr>
<tr>
<td>Key F</td>
<td></td>
<td>h9</td>
</tr>
<tr>
<td>Flange N</td>
<td>Ø < 250</td>
<td>j6</td>
</tr>
</tbody>
</table>

Bearings

BMD motors use radial ball bearings, lubricated for life with grease and axially pre-loaded. The types of bearings in use are listed in the following table.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>DRIVE END</th>
<th>NON DRIVE END</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD 65</td>
<td>6201 2RS</td>
<td>6001 2RS</td>
</tr>
<tr>
<td>BMD 82</td>
<td>6205 2RS</td>
<td>6203 2RS</td>
</tr>
<tr>
<td>BMD 102</td>
<td>6205 2RS</td>
<td>6204 2RS</td>
</tr>
<tr>
<td>BMD 118</td>
<td>6206 2RS</td>
<td>6205 2RS</td>
</tr>
<tr>
<td>BMD 145</td>
<td>6206 2RS</td>
<td>6305 2RS</td>
</tr>
<tr>
<td>BMD 170</td>
<td>6208 2RS</td>
<td>6305 2RS</td>
</tr>
</tbody>
</table>
Shaft loads

The maximum radial load (F_R) and maximum axial load (F_A) are computed using ISO 281 calculation L_{10h}, assuming a bearing life of 20,000 hours. The load and the speed are assumed to be constant throughout the bearing life.

The maximum radial load is reported as a function of the distance (X) between flange plane and the point of force application. The fatigue limit for the radial load is computed for each size assuming the smallest shaft diameter catalogue (e.g. 11 mm for BMD 82). The maximum radial loads F_R are valid only for the horizontal installation of the motor without additional axial load.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SPEED [min⁻¹]</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Nm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMD 65</td>
<td>0.85</td>
<td>59</td>
<td>48</td>
<td>42</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>65</td>
<td>53</td>
<td>46</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>69</td>
<td>56</td>
<td>49</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>BMD 82</td>
<td>3.2</td>
<td>115</td>
<td>94</td>
<td>82</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>120</td>
<td>100</td>
<td>85</td>
<td>81</td>
<td>79</td>
</tr>
<tr>
<td>BMD 102</td>
<td>4</td>
<td>140</td>
<td>110</td>
<td>100</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>150</td>
<td>120</td>
<td>105</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>160</td>
<td>130</td>
<td>110</td>
<td>105</td>
<td>100</td>
</tr>
<tr>
<td>BMD 118</td>
<td>5.6</td>
<td>150</td>
<td>132</td>
<td>114</td>
<td>109</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>170</td>
<td>139</td>
<td>121</td>
<td>115</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>180</td>
<td>145</td>
<td>130</td>
<td>120</td>
<td>115</td>
</tr>
<tr>
<td>BMD 145</td>
<td>16.8</td>
<td>280</td>
<td>230</td>
<td>200</td>
<td>185</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>295</td>
<td>240</td>
<td>210</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>BMD 170</td>
<td>34</td>
<td>300</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>320</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shaft loads

Maximum radial load (F_r=0)
Curves parametrized according to motor nominal speed.
BMD 65 • Ratings

<table>
<thead>
<tr>
<th></th>
<th>BMD 65 0.85 Nm</th>
<th>BMD 65 1.7 Nm</th>
<th>BMD 65 2.2 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{m} [Nm]</td>
<td>0.83</td>
<td>1.65</td>
<td>2.12</td>
</tr>
<tr>
<td>M_{n} [Nm]</td>
<td>0.80</td>
<td>1.60</td>
<td>2.05</td>
</tr>
<tr>
<td>n [min⁻¹]</td>
<td>1600</td>
<td>3000</td>
<td>1600</td>
</tr>
<tr>
<td>f_{n} [Hz]</td>
<td>107</td>
<td>200</td>
<td>107</td>
</tr>
<tr>
<td>P_{n} [kW]</td>
<td>0.14</td>
<td>0.28</td>
<td>0.36</td>
</tr>
<tr>
<td>M_{max} [Nm]</td>
<td>8.55</td>
<td>17.4</td>
<td>22.0</td>
</tr>
<tr>
<td>$2p$ [-]</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm² \cdot 10⁻⁴]</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>τ_{el} [ms]</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>m_{max} [kg]</td>
<td>1.3</td>
<td>1.9</td>
<td>2.6</td>
</tr>
<tr>
<td>V_{n} [V]</td>
<td>168</td>
<td>193</td>
<td>179</td>
</tr>
<tr>
<td>I_{n} [A]</td>
<td>0.77</td>
<td>1.26</td>
<td>1.65</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>2.50</td>
<td>4.30</td>
<td>2.40</td>
</tr>
<tr>
<td>K_{s} [Nm/V]</td>
<td>75</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>R_{p} [Ω]</td>
<td>1.10</td>
<td>1.35</td>
<td>1.29</td>
</tr>
<tr>
<td>L_{pp} [mH]</td>
<td>48.4</td>
<td>30.4</td>
<td>30.4</td>
</tr>
<tr>
<td>V_{n} [VAC]</td>
<td>-295</td>
<td>-336</td>
<td>-285</td>
</tr>
<tr>
<td>I_{n} [A]</td>
<td>-0.76</td>
<td>-0.72</td>
<td>-1.07</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>-2.43</td>
<td>-2.46</td>
<td>-2.46</td>
</tr>
<tr>
<td>K_{s} [Nm/V]</td>
<td>-76</td>
<td>-155</td>
<td>-143</td>
</tr>
<tr>
<td>R_{p} [Ω]</td>
<td>-50.0</td>
<td>-92.3</td>
<td>-47.6</td>
</tr>
<tr>
<td>L_{pp} [mH]</td>
<td>-150</td>
<td>-279</td>
<td>-144</td>
</tr>
<tr>
<td>M_{b} [Nm]</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Δm_{M} [kg]</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>ΔJ [Kgm² \cdot 10⁻⁴]</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>F_{24}</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Δm_{M} [kg]</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ΔJ [Kgm² \cdot 10⁻⁴]</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

230 Vac

400 Vac
BMD 65 • Dimensions

Flange variant B5

- **Flange variant P M N S T LA**
 - P1-S1 variant
 - P2 variant
 - P3-S3 variant
 - P1N-S1N variant

Motor length depending on the option

Shaft diameter variant

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA(1)</th>
<th>F(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>20</td>
<td>M3</td>
<td>10.2</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>23</td>
<td>M4</td>
<td>12.5</td>
<td>4</td>
</tr>
</tbody>
</table>

Feedback variants

- M0 RES2/SEN ENB1/ENB2 ENB3...ENB6/ENB8
- F24/F1 options

Dimension V

<table>
<thead>
<tr>
<th>Torque</th>
<th>Feedback Variants</th>
<th>Without brake or flywheel</th>
<th>With brake or flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>o</sub></td>
<td>RES2/SEN</td>
<td>ENB1/ENB2</td>
<td>ENB3...ENB6/ENB8</td>
</tr>
<tr>
<td>0.85</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>1.7</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>2.2</td>
<td>138</td>
<td>138</td>
<td>138</td>
</tr>
</tbody>
</table>

Dimension LB

<table>
<thead>
<tr>
<th>Torque</th>
<th>Feedback Variants</th>
<th>Without brake or flywheel</th>
<th>With brake or flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>o</sub></td>
<td>RES2/SEN</td>
<td>ENB1/ENB2</td>
<td>ENB3...ENB6/ENB8</td>
</tr>
<tr>
<td>0.85</td>
<td>112</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>1.7</td>
<td>135</td>
<td>153</td>
<td>153</td>
</tr>
<tr>
<td>2.2</td>
<td>161</td>
<td>179</td>
<td>179</td>
</tr>
</tbody>
</table>

Notes:

(1) Motor shaft extension without key available.
BMD 82 • Ratings

BMD 82 3.2 Nm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0 [Nm]</td>
<td>3.00</td>
<td>M_0 [Nm]</td>
<td>3.20</td>
</tr>
<tr>
<td>M_n [Nm]</td>
<td>2.80</td>
<td>M_n [Nm]</td>
<td>4.40</td>
</tr>
<tr>
<td>n [min⁻¹]</td>
<td>1600</td>
<td>n [min⁻¹]</td>
<td>1600</td>
</tr>
<tr>
<td>f_n [Hz]</td>
<td>107</td>
<td>f_n [Hz]</td>
<td>107</td>
</tr>
<tr>
<td>P_n [kW]</td>
<td>0.53</td>
<td>P_n [kW]</td>
<td>0.70</td>
</tr>
<tr>
<td>M_{max} [Nm]</td>
<td>8.50</td>
<td>M_{max} [Nm]</td>
<td>11.5</td>
</tr>
<tr>
<td>$2p$ [-]</td>
<td>8</td>
<td>$2p$ [-]</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm²·10⁻⁴]</td>
<td>1.4</td>
<td>J [Kgm²·10⁻⁴]</td>
<td>1.7</td>
</tr>
<tr>
<td>τ_{el} [ms]</td>
<td>5.7</td>
<td>τ_{el} [ms]</td>
<td>5.7</td>
</tr>
<tr>
<td>τ_{therm} [min]</td>
<td>26</td>
<td>τ_{therm} [min]</td>
<td>33</td>
</tr>
<tr>
<td>m_{el} (kg)</td>
<td>3.5</td>
<td>m_{el} (kg)</td>
<td>4.6</td>
</tr>
</tbody>
</table>

BMD 82 4.4 Nm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0 [Nm]</td>
<td>3.00</td>
<td>M_0 [Nm]</td>
<td>3.20</td>
</tr>
<tr>
<td>M_n [Nm]</td>
<td>2.80</td>
<td>M_n [Nm]</td>
<td>4.40</td>
</tr>
<tr>
<td>n [min⁻¹]</td>
<td>1600</td>
<td>n [min⁻¹]</td>
<td>1600</td>
</tr>
<tr>
<td>f_n [Hz]</td>
<td>107</td>
<td>f_n [Hz]</td>
<td>107</td>
</tr>
<tr>
<td>P_n [kW]</td>
<td>0.53</td>
<td>P_n [kW]</td>
<td>0.70</td>
</tr>
<tr>
<td>M_{max} [Nm]</td>
<td>8.50</td>
<td>M_{max} [Nm]</td>
<td>11.5</td>
</tr>
<tr>
<td>$2p$ [-]</td>
<td>8</td>
<td>$2p$ [-]</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm²·10⁻⁴]</td>
<td>1.4</td>
<td>J [Kgm²·10⁻⁴]</td>
<td>1.7</td>
</tr>
<tr>
<td>τ_{el} [ms]</td>
<td>5.7</td>
<td>τ_{el} [ms]</td>
<td>5.7</td>
</tr>
<tr>
<td>τ_{therm} [min]</td>
<td>26</td>
<td>τ_{therm} [min]</td>
<td>33</td>
</tr>
<tr>
<td>m_{el} (kg)</td>
<td>3.5</td>
<td>m_{el} (kg)</td>
<td>4.6</td>
</tr>
</tbody>
</table>

230 Vac

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_n [VAC]</td>
<td>191</td>
<td>V_n [VAC]</td>
<td>181</td>
</tr>
<tr>
<td>I_0 [A]</td>
<td>2.51</td>
<td>I_0 [A]</td>
<td>2.37</td>
</tr>
<tr>
<td>I_n [A]</td>
<td>4.50</td>
<td>I_n [A]</td>
<td>3.30</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>6.00</td>
<td>I_{max} [A]</td>
<td>5.10</td>
</tr>
<tr>
<td>K_r [Nm/A]</td>
<td>92</td>
<td>K_r [Nm/A]</td>
<td>3.00</td>
</tr>
<tr>
<td>R_{pp} [Ω]</td>
<td>11.3</td>
<td>R_{pp} [Ω]</td>
<td>6.89</td>
</tr>
<tr>
<td>L_{pp} [mH]</td>
<td>64.2</td>
<td>L_{pp} [mH]</td>
<td>39.0</td>
</tr>
</tbody>
</table>

400 Vac

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_n [VAC]</td>
<td>332</td>
<td>V_n [VAC]</td>
<td>315</td>
</tr>
<tr>
<td>I_0 [A]</td>
<td>1.39</td>
<td>I_0 [A]</td>
<td>1.36</td>
</tr>
<tr>
<td>I_n [A]</td>
<td>2.60</td>
<td>I_n [A]</td>
<td>3.40</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>3.90</td>
<td>I_{max} [A]</td>
<td>4.30</td>
</tr>
<tr>
<td>K_r [Nm/A]</td>
<td>4.70</td>
<td>K_r [Nm/A]</td>
<td>4.70</td>
</tr>
<tr>
<td>R_{pp} [Ω]</td>
<td>159</td>
<td>R_{pp} [Ω]</td>
<td>159</td>
</tr>
<tr>
<td>L_{pp} [mH]</td>
<td>194</td>
<td>L_{pp} [mH]</td>
<td>194</td>
</tr>
</tbody>
</table>

24 F24

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_b [Nm]</td>
<td>4.5</td>
<td>M_b [Nm]</td>
<td>4.5</td>
</tr>
<tr>
<td>Δm_{el} (kg)</td>
<td>0.6</td>
<td>Δm_{el} (kg)</td>
<td>0.6</td>
</tr>
<tr>
<td>ΔJ [Kgm²·10⁻⁴]</td>
<td>0.2</td>
<td>ΔJ [Kgm²·10⁻⁴]</td>
<td>0.2</td>
</tr>
</tbody>
</table>

1 F1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm_{el} (kg)</td>
<td>1</td>
<td>Δm_{el} (kg)</td>
<td>1</td>
</tr>
<tr>
<td>ΔJ [Kgm²·10⁻⁴]</td>
<td>3</td>
<td>ΔJ [Kgm²·10⁻⁴]</td>
<td>3</td>
</tr>
</tbody>
</table>
BMD 82 • Dimensions

B5 Flange Variant

<table>
<thead>
<tr>
<th>Flange variant</th>
<th>P</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>82</td>
<td>100</td>
<td>80</td>
<td>6.5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>115</td>
<td>100</td>
<td>115</td>
<td>95</td>
<td>9</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Shaft Diameter Variant

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA (1)</th>
<th>F (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>23</td>
<td>M4</td>
<td>12.5</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>30</td>
<td>M5</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>40</td>
<td>M6</td>
<td>21.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
(1) Motor shaft extension without key available.

MOTOR LENGTH DEPENDING ON THE OPTION

Dimension V

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flyweel Feedback Variants</th>
<th>With Brake or Flyweel F24/F1 options Feedback Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>s</sub></td>
<td>RES1/RES2/SEN ENB1/ENB2/ENB7</td>
<td>RES1/RES2/SEN ENB1/ENB2/ENB7/ENB8</td>
</tr>
<tr>
<td>3.2</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>4.4</td>
<td>152</td>
<td>152</td>
</tr>
</tbody>
</table>

Dimension LB

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flyweel Feedback Variants</th>
<th>With Brake or Flyweel F24/F1 options Feedback Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>s</sub></td>
<td>RES1/RES2/SEN ENB1/ENB2/ENB7</td>
<td>RES1/RES2/SEN ENB1...ENB7</td>
</tr>
<tr>
<td>3.2</td>
<td>160</td>
<td>183</td>
</tr>
<tr>
<td>4.4</td>
<td>180</td>
<td>203</td>
</tr>
</tbody>
</table>

SHAFT END SECTION
BMD 102 • Ratings

<table>
<thead>
<tr>
<th>BMD 102 4 Nm</th>
<th>BMD 102 7.2 Nm</th>
<th>BMD 102 9.6 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_m [Nm]</td>
<td>4.00</td>
<td>7.20</td>
</tr>
<tr>
<td>M_n [Nm]</td>
<td>3.70 3.40 3.10</td>
<td>7.00 6.70 6.00</td>
</tr>
<tr>
<td>n [min⁻¹]</td>
<td>1600 3000 4500</td>
<td>1600 3000 4500</td>
</tr>
<tr>
<td>f_n [Hz]</td>
<td>107 200 300</td>
<td>107 200 300</td>
</tr>
<tr>
<td>P_n [kW]</td>
<td>0.62 1.01 1.46</td>
<td>1.17 2.10 2.83</td>
</tr>
<tr>
<td>M_{max} [Nm]</td>
<td>11.0</td>
<td>21.0</td>
</tr>
<tr>
<td>$2p$ [-]</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm²·10⁻⁴]</td>
<td>1.9</td>
<td>3.4</td>
</tr>
<tr>
<td>τ_{el} [ms]</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>m_{el} [kg]</td>
<td>4.2</td>
<td>5.8</td>
</tr>
<tr>
<td>V_n [VAC]</td>
<td>184 177 177 181</td>
<td>187 177 182 183</td>
</tr>
<tr>
<td>I_n [A]</td>
<td>3.03 5.73 8.82</td>
<td>5.00 9.70 13.9</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>9.30 17.6 27.3 30.7 35.1</td>
<td>18.3 35.0 51.0 61.0 66.0</td>
</tr>
<tr>
<td>K_v [Nm/A]</td>
<td>94 50 32 28 25</td>
<td>94 49 34 28 26</td>
</tr>
<tr>
<td>R_w [Ω]</td>
<td>8.38 2.39 1.02</td>
<td>3.02 0.82 0.40</td>
</tr>
<tr>
<td>L_w [mH]</td>
<td>70.5 20.1 8.58</td>
<td>25.4 6.90 3.30</td>
</tr>
<tr>
<td>V_n [VAC]</td>
<td>314 305 303 319</td>
<td>320 311 305 320</td>
</tr>
<tr>
<td>I_n [A]</td>
<td>1.77 3.30 4.90</td>
<td>2.94 5.50 8.30</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>1.52 2.83 3.80</td>
<td>2.92 5.40 7.50</td>
</tr>
<tr>
<td>K_v [Nm/min]</td>
<td>5.48 10.2 15.0 17.6 19.0</td>
<td>10.7 20.0 30.0 35.0 40.0</td>
</tr>
<tr>
<td>R_w [Ω]</td>
<td>160 86 57 49 43</td>
<td>161 86 57 49 49</td>
</tr>
<tr>
<td>L_w [mH]</td>
<td>2.26 1.21 0.82</td>
<td>2.45 1.31 0.87</td>
</tr>
<tr>
<td>F_{24}</td>
<td>24.0 7.05 3.27</td>
<td>8.87 2.53 1.11</td>
</tr>
<tr>
<td>M_b [Nm]</td>
<td>202 59.3 27.5</td>
<td>74.7 21.3 9.40</td>
</tr>
<tr>
<td>Δm_m [kg]</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ΔJ [Kgm²·10⁻⁴]</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>F_{1}</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Δm_m [kg]</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>ΔJ [Kgm²·10⁻⁴]</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
BMD 102 • Dimensions

B5 Flange Variant

<table>
<thead>
<tr>
<th>Flange Variant</th>
<th>P</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>102</td>
<td>100</td>
<td>80</td>
<td>7</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>115</td>
<td>102</td>
<td>115</td>
<td>95</td>
<td>9</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Shaft Diameter Variant

<table>
<thead>
<tr>
<th>Shaft Diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA(1)</th>
<th>F(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
<td>40</td>
<td>M6</td>
<td>21.5</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>50</td>
<td>M8</td>
<td>27</td>
<td>8</td>
</tr>
</tbody>
</table>

Motor Length Depending on the Option

Dimension V

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flywheel</th>
<th>With Brake or Flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feedback Variants</td>
<td>Feedback Variants</td>
</tr>
<tr>
<td>M_p</td>
<td>RES1/RES2/SEN ENB1/ENB2/ENB7 ENB3...ENB6/ENB8</td>
<td>RES1/RES2/SEN ENB1/ENB2/ENB7 ENB3...ENB6/ENB8</td>
</tr>
<tr>
<td>4</td>
<td>123 123 123 123</td>
<td>123 163 163 163</td>
</tr>
<tr>
<td>16</td>
<td>150 150 150 150</td>
<td>150 190 190 190</td>
</tr>
<tr>
<td>9.6</td>
<td>177 177 177 177</td>
<td>177 217 217 217</td>
</tr>
</tbody>
</table>

Dimension LB

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flywheel</th>
<th>With Brake or Flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feedback Variants</td>
<td>Feedback Variants</td>
</tr>
<tr>
<td>M_p</td>
<td>RES1/RES2/SEN ENB1/ENB2/ENB7 ENB3...ENB6/ENB8</td>
<td>RES1/RES2/SEN ENB1/ENB2/ENB7 ENB3...ENB6/ENB8</td>
</tr>
<tr>
<td>4</td>
<td>153 176 153 153</td>
<td>193 216 193 193</td>
</tr>
<tr>
<td>7.2</td>
<td>180 203 180 180</td>
<td>220 243 220 220</td>
</tr>
<tr>
<td>9.6</td>
<td>207 230 207 207</td>
<td>247 257 247 247</td>
</tr>
</tbody>
</table>

Notes:
(1) Motor shaft extension without key available.
BMD 118 • Ratings

<table>
<thead>
<tr>
<th>BMD 118 5.6 Nm</th>
<th>BMD 118 10.2 Nm</th>
<th>BMD 118 14 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>b</sub> [Nm]</td>
<td>5.60</td>
<td>10.2</td>
</tr>
<tr>
<td>M<sub>n</sub> [Nm]</td>
<td>5.50 5.10 4.60 4.10 3.90</td>
<td>10.0 9.50 8.50 8.00 7.50</td>
</tr>
<tr>
<td>n [min⁻¹]</td>
<td>1600 3000 4500 5500 6000</td>
<td>1600 3000 4500 5500 6000</td>
</tr>
<tr>
<td>f<sub>n</sub> [Hz]</td>
<td>107 200 300 367 400</td>
<td>107 200 300 367 400</td>
</tr>
<tr>
<td>P<sub>n</sub> [kW]</td>
<td>0.92 1.60 2.18 2.36 2.45</td>
<td>1.68 3.00 4.00 4.60 4.70</td>
</tr>
<tr>
<td>M<sub>max</sub> [Nm]</td>
<td>15.0</td>
<td>30.0</td>
</tr>
<tr>
<td>2p [-]</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm²·10⁻⁴]</td>
<td>4.5</td>
<td>7.8</td>
</tr>
<tr>
<td>τ<sub>el</sub> [ms]</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>m<sub>el</sub> [kg]</td>
<td>7.7</td>
<td>9.7</td>
</tr>
</tbody>
</table>

230 Vac

V_n [VAC]	179 185 180 186 171	184 178 174 196 9.20 16.3 184 9.20 16.3 184	
I_n [A]	4.20 7.30 11.2 13.2 15.6	7.20 13.7 20.8 22.6	7.20 13.5 18.3 17.4
I_{max} [A]	25.3 48.0 73.0 79.0	95 50 33.1 30.4	104 59 104 59
K_e [mV/min⁻¹]	1.33 0.76 0.50 0.42 0.36	1.41 0.75 0.49 0.45	1.51 0.86 1.51 0.86
R_p [Ω]	52.3 17.1 7.40 5.18 3.72	20.5 5.70 2.50 2.10	15.4 4.90 15.4 4.90

400 Vac

V_n [VAC]	322 315 316 335 324	312 305 314 323 306	323 320 325 335 329
I_n [A]	2.30 4.30 6.40 7.30 8.20	4.30 8.00 11.6 13.7 15.8	5.30 9.80 14.4 16.9 18.9
I_{max} [A]	2.1 3.90 5.20 5.20 5.50	4.20 7.90 10.2 10.5 11.4	4.90 8.40 10.9 11.4
K_e [mV/min⁻¹]	14.9 28.0 40.0 48.0 55.0	161 86 60 50 44	17.2 32.0 47.0 55.0 62.0
R_p [Ω]	165 88 59 52 46	161 86 60 50 44	182 98 67 57 51
L_p [mH]	2.43 1.30 0.88 0.77 0.68	2.39 1.28 0.88 0.75 0.65	2.66 1.43 0.97 0.83 0.74
R_n [Ω]	31.3 3.76 1.76 1.29 1.04	4.47 1.27 0.61 0.43 0.33	3.60 1.04 0.48 0.35 0.28
L_n [mH]	174 50.5 23.4 17.1 13.8	58.8 16.7 8.00 5.70 4.30	47.4 13.7 6.30 4.60 3.70

F24

Mb [Nm]	18	18	18
Δm_n [kg]	2.2	2.2	2.2
ΔJ [Kgm²·10⁻⁴]	1.7	1.7	1.7
F1	3.5	3.5	3.5
Δm_n [kg]	16	16	16
BMD 118 • Dimensions

85 Flange Variant End Section

<table>
<thead>
<tr>
<th>Flange variant</th>
<th>P</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>130S</td>
<td>118</td>
<td>130</td>
<td>95</td>
<td>9</td>
<td>3.5</td>
<td>10</td>
</tr>
<tr>
<td>118</td>
<td>118</td>
<td>130</td>
<td>110</td>
<td>9</td>
<td>3.5</td>
<td>10</td>
</tr>
<tr>
<td>130</td>
<td>145</td>
<td>165</td>
<td>130</td>
<td>11.5</td>
<td>3.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Shaft Diameter Variant

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA</th>
<th>F(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
<td>40</td>
<td>M6</td>
<td>21.5</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>50</td>
<td>M8</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>60</td>
<td>M10</td>
<td>31</td>
<td>8</td>
</tr>
</tbody>
</table>

Motor Length Depending on the Option

Dimension V

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flywheel</th>
<th>With Brake or Flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>p</sub></td>
<td>Feedback Variants</td>
<td>Feedback Variants</td>
</tr>
<tr>
<td>5.6</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>10.2</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>14</td>
<td>208</td>
<td>208</td>
</tr>
</tbody>
</table>

Dimension LB

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flywheel</th>
<th>With Brake or Flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>p</sub></td>
<td>Feedback Variants</td>
<td>Feedback Variants</td>
</tr>
<tr>
<td>5.6</td>
<td>179</td>
<td>204</td>
</tr>
<tr>
<td>10.2</td>
<td>210</td>
<td>235</td>
</tr>
<tr>
<td>14</td>
<td>243</td>
<td>268</td>
</tr>
</tbody>
</table>

Notes:

(1) Motor shaft extension without key available.
BMD 145 • Ratings

<table>
<thead>
<tr>
<th></th>
<th>BMD 145 16.8 Nm</th>
<th>BMD 145 22 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0 [Nm]</td>
<td>16.8</td>
<td>22.0</td>
</tr>
<tr>
<td>M_n [Nm]</td>
<td>16.5 16.0 14.0 13.0 12.5</td>
<td>20.7 19.2 17.0 15.0 -</td>
</tr>
<tr>
<td>n [min⁻¹]</td>
<td>1600 3000 4500 5500 6000</td>
<td>1600 3000 4500 5500 -</td>
</tr>
<tr>
<td>f_n [Hz]</td>
<td>107 200 300 367 400</td>
<td>107 200 300 367 -</td>
</tr>
<tr>
<td>P_n [kW]</td>
<td>2.76 5.00 6.60 7.50 7.90</td>
<td>3.50 6.00 8.00 8.60 -</td>
</tr>
<tr>
<td>M_{max} [Nm]</td>
<td>46.0</td>
<td>59.0</td>
</tr>
<tr>
<td>$2p$ [-]</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm² 10⁻⁴]</td>
<td>12.8</td>
<td>17.6</td>
</tr>
<tr>
<td>τ_{el} [ms]</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>τ_{therm} [min]</td>
<td>36</td>
<td>47</td>
</tr>
<tr>
<td>m_{set} [kg]</td>
<td>15.2</td>
<td>18.2</td>
</tr>
</tbody>
</table>

230 Vac

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_n [V_{ac}]</td>
<td>180 176</td>
<td>185 202 - - -</td>
</tr>
<tr>
<td>I_n [A]</td>
<td>12.1 22.8 - - -</td>
<td>15.4 26.5 - - -</td>
</tr>
<tr>
<td>I_{ac} [A]</td>
<td>11.9 21.9 - - -</td>
<td>14.5 22.9 - - -</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>46.0 88.0 - - -</td>
<td>51.0 87.0 - - -</td>
</tr>
<tr>
<td>K_a [mV/min⁻¹]</td>
<td>89</td>
<td>102</td>
</tr>
<tr>
<td>R_a [Ω]</td>
<td>0.84 0.24 - - -</td>
<td>0.67 0.23 - - -</td>
</tr>
<tr>
<td>L_{ac} [mH]</td>
<td>13.3 3.80 - - -</td>
<td>10.6 3.60 - - -</td>
</tr>
</tbody>
</table>

400 Vac

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_n [V_{ac}]</td>
<td>314 308 314 319 305</td>
<td>319 321 323 357 -</td>
</tr>
<tr>
<td>I_n [A]</td>
<td>6.90 13.0 19.0 22.8 26.0</td>
<td>9.00 16.4 24.3 26.5 -</td>
</tr>
<tr>
<td>I_{ac} [A]</td>
<td>6.80 12.5 16.4 17.5 19.0</td>
<td>8.40 14.2 18.3 17.6 -</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>26.7 50.0 73.0 88.0 100</td>
<td>29.5 54.0 80.0 87.0 -</td>
</tr>
<tr>
<td>K_a [mV/min⁻¹]</td>
<td>156</td>
<td>176</td>
</tr>
<tr>
<td>K_r [Nm/A]</td>
<td>2.42 1.29 0.88 0.74 0.65</td>
<td>2.45 1.34 0.90 0.83 -</td>
</tr>
<tr>
<td>R_a [Ω]</td>
<td>2.53 0.72 0.34 0.24 0.18</td>
<td>1.97 0.59 0.27 0.23 -</td>
</tr>
<tr>
<td>L_{ac} [mH]</td>
<td>40.4 11.5 5.40 3.80 2.90</td>
<td>31.5 9.40 4.30 3.60 -</td>
</tr>
</tbody>
</table>

F24

	18	18
Δm_b [Nm]	18	18
Δm_{bi} [kg]	2.6	2.6
ΔJ [Kgm² 10⁻⁴]	1.7	1.7

F3

	5.0	5.0
Δm_{m} [kg]	5.0	5.0
ΔJ [Kgm² 10⁻⁴]	36	36
BMD 145 • Dimensions

B5 FLANGE VARIANT

<table>
<thead>
<tr>
<th>Flange variant</th>
<th>P</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>145</td>
<td>165</td>
<td>130</td>
<td>12</td>
<td>3.5</td>
<td>12</td>
</tr>
</tbody>
</table>

SHAFT DIAMETER VARIANT

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA (1)</th>
<th>F (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
<td>40</td>
<td>M6</td>
<td>21.5</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>50</td>
<td>M8</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>60</td>
<td>M10</td>
<td>31</td>
<td>8</td>
</tr>
</tbody>
</table>

SHAFT END SECTION

MOTOR LENGTH DEPENDING ON THE OPTION

DIMENSION V

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flyweel</th>
<th>With Brake or Flyweel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feedback Variants</td>
<td>Feedback Variants</td>
</tr>
<tr>
<td>M<sub>n</sub></td>
<td>RES1/RES2/SEN</td>
<td>ENB1/ENB2/ENB7</td>
</tr>
<tr>
<td>16.8</td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td>22</td>
<td>230</td>
<td>230</td>
</tr>
</tbody>
</table>

DIMENSION LB

<table>
<thead>
<tr>
<th>Torque</th>
<th>Without Brake or Flyweel</th>
<th>With Brake or Flyweel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feedback Variants</td>
<td>Feedback Variants</td>
</tr>
<tr>
<td>M<sub>n</sub></td>
<td>RES1/RES2/SEN</td>
<td>ENB1/ENB2/ENB7</td>
</tr>
<tr>
<td>16.8</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>22</td>
<td>265</td>
<td>290</td>
</tr>
</tbody>
</table>

Notes:

(1) Motor shaft extension without key available.
BMD 145 with Forced Ventilation option • Ratings

M₀ [Nm]	20.5	19.2	17.2	15.7	-
Mₚ [Nm]	3.43	6.00	8.10	9.00	-
n [min⁻¹]	1600	3000	4500	5500	-
fₚ [Hz]	107	200	300	367	-
Pₚ [kW]	4.60	8.20	11.5	-	-
Mₗmax [Nm]	46.0	59.0	-	-	-
J [kNm²·10⁻⁴]	12.8	17.6	-	-	-
τₑ [ms]	16	16	-	-	-
τₜₚ [min]	17	22	-	-	-
m₀ [kg]	18.7	21.7	-	-	-
Vₚ [VAC]	203	195	-	-	-
I₀ [A]	16.3	30.0	-	-	-
Iₚ [A]	15.5	26.6	-	-	-
Iₚmax [A]	46.0	88.0	-	-	-
Kₑ [mV/min⁻¹]	89	47	-	-	-
Kₚ [Nm/A]	1.32	0.72	-	-	-
Rₚ [Ω]	0.84	0.24	-	-	-
Lₚ [mH]	13.3	3.80	-	-	-
Vₚ [VAC]	345	331	322	323	-
I₀ [A]	9.45	17.6	25.8	30.0	-
Iₚ [A]	8.90	15.2	20.0	21.6	-
Iₚmax [A]	26.7	50.0	73.0	88.0	-
Kₑ [mV/min⁻¹]	156	83	57	47	-
Kₚ [Nm/A]	2.28	1.23	0.83	0.72	-
Rₚ [Ω]	2.53	0.72	0.34	0.24	-
Lₚ [mH]	20.0	12.4	7.40	5.40	-
Mb [Nm]	18	18	-	-	-
Δm₀ [kg]	2.6	2.6	-	-	-
ΔJ [Kgm²·10⁻⁴]	1.7	1.7	-	-	-
F₄ [Nm]	5.0	5.0	-	-	-
Δmₚ [kg]	36	36	-	-	-
ΔJ [Kgm²·10⁻⁴]	36	36	-	-	-
BMD 145 with Forced Ventilation option • Dimensions

B5 FLANGE VARIANT

<table>
<thead>
<tr>
<th>Flange variant</th>
<th>P</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>145</td>
<td>165</td>
<td>130</td>
<td>12</td>
<td>3.5</td>
<td>12</td>
</tr>
</tbody>
</table>

SHAFT DIAMETER VARIANT

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA (1)</th>
<th>F (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
<td>40</td>
<td>M6</td>
<td>21.5</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>50</td>
<td>M8</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>60</td>
<td>M10</td>
<td>31</td>
<td>8</td>
</tr>
</tbody>
</table>

MOTOR LENGTH DEPENDING ON THE OPTION

DIMENSION V - (Vv)

<table>
<thead>
<tr>
<th>Torque</th>
<th>Feedback Variants Without Brake or Flywheel</th>
<th>Feedback Variants With Brake or Flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_o</td>
<td>RES1/RES2/SEN/ENB1/ENB2/ENB7/ENB8</td>
<td>RES1/RES2/SEN/ENB1/ENB2/ENB7/ENB8</td>
</tr>
<tr>
<td>16.8</td>
<td>195 - (249) 195 - (249) 245 - (299)</td>
<td>245 - (324) 245 - (299)</td>
</tr>
<tr>
<td>22</td>
<td>230 - (284) 230 - (284) 280 - (334)</td>
<td>280 - (394) 280 - (334)</td>
</tr>
</tbody>
</table>

DIMENSION LB - (Lv)

<table>
<thead>
<tr>
<th>Torque</th>
<th>Feedback Variants Without Brake or Flywheel</th>
<th>Feedback Variants With Brake or Flywheel F24/F1 options</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_o</td>
<td>RES1/RES2/SEN/ENB1/ENB2/ENB7/ENB8</td>
<td>RES1/RES2/SEN/ENB1/ENB2/ENB7/ENB8</td>
</tr>
<tr>
<td>16.8</td>
<td>310 - (252) 310 - (252) 360 - (252)</td>
<td>360 - (252) 360 - (252)</td>
</tr>
<tr>
<td>22</td>
<td>345 - (252) 345 - (252) 395 - (312)</td>
<td>395 - (312) 395 - (312)</td>
</tr>
</tbody>
</table>

Notes:

(1) Motor shaft extension without key available.
BMD 170 • Ratings

<table>
<thead>
<tr>
<th></th>
<th>BMD 34 Nm</th>
<th>BMD 45 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.0</td>
<td>45.0</td>
</tr>
<tr>
<td>M_0 [Nm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{in} [Nm]</td>
<td>31.0</td>
<td>42.0</td>
</tr>
<tr>
<td>n [min$^{-1}$]</td>
<td>1600</td>
<td>1600</td>
</tr>
<tr>
<td>f_n [Hz]</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>P_n [kW]</td>
<td>5.20</td>
<td>7.00</td>
</tr>
<tr>
<td>M_{max} [Nm]</td>
<td>90.0</td>
<td>125</td>
</tr>
<tr>
<td>$2p$ [-]</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm$^2 \cdot 10^{-4}$]</td>
<td>33.8</td>
<td>47.5</td>
</tr>
<tr>
<td>τ_{el} [ms]</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>τ_{therm} [min]</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>m_{ma} [kg]</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>V_n [VAC]</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>I_0 [A]</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td>I_n [A]</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>66.0</td>
<td></td>
</tr>
<tr>
<td>K_v [mV/min$^{-1}$]</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>K_T [Nm/A]</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>R_{pp} [Ω]</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>L_{pp} [mH]</td>
<td>5.80</td>
<td></td>
</tr>
<tr>
<td>V_n [VAC]</td>
<td>319</td>
<td>310</td>
</tr>
<tr>
<td>I_0 [A]</td>
<td>12.4</td>
<td>17.1</td>
</tr>
<tr>
<td>I_n [A]</td>
<td>11.2</td>
<td>15.9</td>
</tr>
<tr>
<td>I_{max} [A]</td>
<td>37.0</td>
<td>52.0</td>
</tr>
<tr>
<td>K_v [mV/min$^{-1}$]</td>
<td>174</td>
<td>185</td>
</tr>
<tr>
<td>K_T [Nm/A]</td>
<td>2.74</td>
<td>2.64</td>
</tr>
<tr>
<td>R_{pp} [Ω]</td>
<td>0.91</td>
<td>0.57</td>
</tr>
<tr>
<td>L_{pp} [mH]</td>
<td>17.9</td>
<td>11.1</td>
</tr>
<tr>
<td>Mb [Nm]</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Δm_{in} [kg]</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>ΔJ [Kgm$^2 \cdot 10^{-4}$]</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Fl [kg]</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Δm_{in} [kg]</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>
BMD 170 • Dimensions

B5 FLANGE VARIANT

<table>
<thead>
<tr>
<th>Flange variant</th>
<th>P</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>170</td>
<td>165</td>
<td>130</td>
<td>12</td>
<td>3.5</td>
<td>12</td>
</tr>
</tbody>
</table>

SHAFT DIAMETER VARIANT

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA (1)</th>
<th>F (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>50</td>
<td>M8</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>60</td>
<td>M10</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>60</td>
<td>M12</td>
<td>35</td>
<td>10</td>
</tr>
</tbody>
</table>

Notes:
(1) Motor shaft extension without key available.

MOTOR LENGTH DEPENDING ON THE OPTION

DIMENSION V

<table>
<thead>
<tr>
<th>Torque</th>
<th>RES1/RES2/SEN</th>
<th>ENB1/ENB2/ENB7</th>
<th>ENB3...ENB6/ENB8</th>
<th>RES1/RES2/SEN</th>
<th>ENB1/ENB2/ENB7</th>
<th>ENB3...ENB6/ENB8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>a</sub> 34</td>
<td>233</td>
<td>233</td>
<td>233</td>
<td>308</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>45</td>
<td>287</td>
<td>287</td>
<td>287</td>
<td>362</td>
<td>362</td>
<td>362</td>
</tr>
</tbody>
</table>

DIMENSION LB

<table>
<thead>
<tr>
<th>Torque</th>
<th>RES1/RES2/SEN</th>
<th>ENB1/ENB2/ENB7</th>
<th>ENB3...ENB6/ENB8</th>
<th>RES1/RES2/SEN</th>
<th>ENB1/ENB2/ENB7</th>
<th>ENB3...ENB6/ENB8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>a</sub> 34</td>
<td>265</td>
<td>303</td>
<td>265</td>
<td>340</td>
<td>378</td>
<td>340</td>
</tr>
<tr>
<td>45</td>
<td>319</td>
<td>357</td>
<td>319</td>
<td>394</td>
<td>432</td>
<td>394</td>
</tr>
</tbody>
</table>
BMD 170 with Forced Ventilation option • Ratings

<table>
<thead>
<tr>
<th>BMD 170 34 Nm with Forced Ventilation</th>
<th>BMD 170 45 Nm with Forced Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mₐ [Nm]</td>
<td>44.0</td>
</tr>
<tr>
<td>Mₐₚ [Nm]</td>
<td>-</td>
</tr>
<tr>
<td>n [min⁻¹]</td>
<td>1600</td>
</tr>
<tr>
<td>fₚ [Hz]</td>
<td>-</td>
</tr>
<tr>
<td>Pₚ [kW]</td>
<td>7.00</td>
</tr>
<tr>
<td>Mₖ [Nm]</td>
<td>90.0</td>
</tr>
<tr>
<td>2p [-]</td>
<td>8</td>
</tr>
<tr>
<td>J [Kgm⁻¹ · 10⁻⁴]</td>
<td>33.8</td>
</tr>
<tr>
<td>τₑ [ms]</td>
<td>23</td>
</tr>
<tr>
<td>mₑ [kg]</td>
<td>29</td>
</tr>
<tr>
<td>Vₑ [Vₚ,ₚ]</td>
<td>207</td>
</tr>
<tr>
<td>Iₑ [A]</td>
<td>29.8</td>
</tr>
<tr>
<td>Iₑₚ [A]</td>
<td>28.7</td>
</tr>
<tr>
<td>Iₑₚₚ [A]</td>
<td>66.0</td>
</tr>
<tr>
<td>Kₑ [mV/min⁻¹]</td>
<td>99</td>
</tr>
<tr>
<td>Kₑₚ [Nm/min⁻¹]</td>
<td>1.48</td>
</tr>
<tr>
<td>Rₑ [Ω]</td>
<td>0.3</td>
</tr>
<tr>
<td>Lₑ [mH]</td>
<td>5.8</td>
</tr>
<tr>
<td>Vₑₚ [Vₚ,ₚ]</td>
<td>350</td>
</tr>
<tr>
<td>Iₑₚ [A]</td>
<td>16.3</td>
</tr>
<tr>
<td>Iₑₚₚ [A]</td>
<td>37.0</td>
</tr>
<tr>
<td>Kₑₚ [mV/min⁻¹]</td>
<td>174</td>
</tr>
<tr>
<td>Kₑₚ [Nm/min⁻¹]</td>
<td>2.59</td>
</tr>
<tr>
<td>Rₑ [Ω]</td>
<td>0.91</td>
</tr>
<tr>
<td>Lₑ [mH]</td>
<td>17.9</td>
</tr>
<tr>
<td>Mb [Nm]</td>
<td>36</td>
</tr>
<tr>
<td>Δmₑ [kg]</td>
<td>4.5</td>
</tr>
<tr>
<td>ΔJ [Kgm⁻¹ · 10⁻⁴]</td>
<td>5.6</td>
</tr>
<tr>
<td>Fₑ [kg]</td>
<td>8.2</td>
</tr>
<tr>
<td>ΔJ [Kgm⁻¹ · 10⁻⁴]</td>
<td>70</td>
</tr>
</tbody>
</table>
BMD 170 with Forced Ventilation option • Dimensions

B5 FLANGE VARIANT

<table>
<thead>
<tr>
<th>Flange variant</th>
<th>P</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>170</td>
<td>165</td>
<td>130</td>
<td>12</td>
<td>3.5</td>
<td>12</td>
</tr>
</tbody>
</table>

SHAFT DIAMETER VARIANT

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>D</th>
<th>E</th>
<th>DB</th>
<th>GA<sup>(1)</sup></th>
<th>F<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>50</td>
<td>M8</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>60</td>
<td>M10</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>60</td>
<td>M12</td>
<td>35</td>
<td>10</td>
</tr>
</tbody>
</table>

MOTOR LENGTH DEPENDING ON THE OPTION

DIMENSION V - (Vv)

<table>
<thead>
<tr>
<th>Torque</th>
<th>Feedback Variants</th>
<th>Feedback Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>b</sub></td>
<td>RES1/RES2/SEN</td>
<td>ENB1/ENB2/ENB7</td>
</tr>
<tr>
<td>34</td>
<td>233 - (306)</td>
<td>233 - (344)</td>
</tr>
<tr>
<td>45</td>
<td>287 - (360)</td>
<td>287 - (398)</td>
</tr>
</tbody>
</table>

DIMENSION LB - (Lv)

<table>
<thead>
<tr>
<th>Torque</th>
<th>Feedback Variants</th>
<th>Feedback Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>b</sub></td>
<td>RES1/RES2/SEN</td>
<td>ENB1/ENB2/ENB7</td>
</tr>
<tr>
<td>34</td>
<td>357 - (302)</td>
<td>395 - (302)</td>
</tr>
<tr>
<td>45</td>
<td>411 - (302)</td>
<td>449 - (302)</td>
</tr>
</tbody>
</table>

Notes:

⁽¹⁾ Motor shaft extension without key available.
The permissible operating range of a brushless servomotor is limited by thermal, mechanical, and electromagnetic limits.

The thermal limit is dependent on the thermal class of the insulation system (F). To adhere to the temperature limits, the torque must be reduced as the speed increases, starting from stall torque M_0. The maximum permissible torque is then dependent on the operation mode. The characteristic curves are assigned for continuous duty S1 and intermittent periodic duty S3 with a cycle time of 10 minutes, except for small motors, for which a cycle time of 1 minute is specified and noted in the characteristic curves. A transient, high overload capacity up to M_{max} is provided.

The speed range is limited by the maximum mechanical speed and the voltage limit. The voltage limit is usually lower than the mechanical limit. The voltage limiting characteristic curve is determined by the motor nominal speed. The characteristic curves for each nominal speed are reported in the same diagram. For drive sizing convenience, it is preferable to select the motor whose voltage limit curve does not lie too far above the maximum speed required for the application.

Therefore, the performance characteristics of a brushless motor are described by a torque and speed operating area. The continuous duty zone is bordered by the maximum continuous torque curve up to the intersection with the voltage limit curve. Continuous duty in the area above the S1 characteristic curve is not thermally permitted for the motor. The intermittent periodic duty zone is bordered by the peak torque line and the voltage limit curve.
BMD 65 • Torque-speed curves
BMD 82 • Torque-speed curves

BMD 82 3.2 - 230V

BMD 82 4.4 - 230V

BMD 82 3.2 - 400V

BMD 82 4.4 - 400V
BMD 102 • Torque-speed curves
BMD 118 • Torque-speed curves
BMD 145 • Torque-speed curves
BMD 145 with Forced Ventilation option
Torque-speed curves
BMD 170 • Torque-speed curves

BMD 170 with Forced Ventilation option
Torque-speed curves
Feedback devices

SENSORLESS: [SEN]
Thanks to an efficient algorithms Bonfiglioli Agile drives can control brushless servo motors without the need of any feedback sensors. With this option the BMD servo motor have no feedback device and the angular position of the motor shaft is estimated from measurements of the current absorbed by the motor.
Feedback devices

RESOLVER: [RES1,RES2]
The resolver is an electromagnetic transformer consisting of a stator and a rotor elements excited from an external source. It produces two output signals that correspond to the sine and cosine angle of the motor shaft. This is a robust device of good accuracy, capable of withstanding high temperature and high levels of vibration. Position information is absolute within one turn.

![Diagram of resolver](image)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BMD 65</th>
<th>BMD82 - BMD170</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES2</td>
<td>RES1</td>
</tr>
<tr>
<td>Poles number</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Transformation ratio</td>
<td>0.5 ±5%</td>
<td>0.5 ±15% -5%</td>
</tr>
<tr>
<td>Input voltage [Vac rms]</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Input current [mA]</td>
<td>65</td>
<td>57</td>
</tr>
<tr>
<td>Input frequency [kHz]</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Phase shift</td>
<td>0°</td>
<td>-11°</td>
</tr>
<tr>
<td>Input impedance Zro</td>
<td>70 + j100</td>
<td>75 + j185</td>
</tr>
<tr>
<td>Output impedance Zss (Ω)</td>
<td>175 + j275</td>
<td>135 + j265</td>
</tr>
<tr>
<td>Electrical error</td>
<td>±10’</td>
<td>±10’</td>
</tr>
<tr>
<td>Accuracy ripple</td>
<td>1’ max</td>
<td>1’ max</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-55°C ... + 155°C</td>
<td>-55°C ... + 155°C</td>
</tr>
<tr>
<td>Max Speed [min⁻¹]</td>
<td>10000</td>
<td>20000</td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>0.065</td>
<td>0.28</td>
</tr>
<tr>
<td>Rotor Inertia [kgm² x 10⁹]</td>
<td>3.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Please check the compatibility with our Motion Control with our Technical team or by consulting the Motion Control catalogue.
Optical encoders

The optical absolute encoder uses a high precision optical disc to measure the angular position. Single turn absolute encoders have an absolute positional information only within one turn. Multi turn absolute encoder is provided of extra gear wheels that account for several shaft revolutions. Therefore the output is unique for each shaft position and revolution up to available revolutions.

HEIDENHAIN ENCODERS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BMD65</th>
<th>BMD82 - BMD170</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENB1</td>
<td>ENB2</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Dr. JOHANNES HEIDENHAIN GmbH</td>
<td></td>
</tr>
<tr>
<td>Data interface</td>
<td>EnDat</td>
<td>EnDat</td>
</tr>
<tr>
<td>Model</td>
<td>ECN1113</td>
<td>EQU1125</td>
</tr>
<tr>
<td>Type</td>
<td>Single turn</td>
<td>Multi turn</td>
</tr>
<tr>
<td>Measuring principle</td>
<td>Optical</td>
<td>Optical</td>
</tr>
<tr>
<td>Power supply</td>
<td>3.6VDC ... 14VDC</td>
<td>3.6VDC ... 14VDC</td>
</tr>
<tr>
<td>Current consumption</td>
<td>85mA (5V)</td>
<td>105mA (5V)</td>
</tr>
<tr>
<td>Periods per revolution</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Position per revolution</td>
<td>8192 (13 bits)</td>
<td>8192 (13 bits)</td>
</tr>
<tr>
<td>Revolutions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40°C ... +115°C</td>
<td>-40°C ... +115°C</td>
</tr>
<tr>
<td>Max Speed [min⁻¹]</td>
<td>12000</td>
<td>12000</td>
</tr>
<tr>
<td>Resistance to shocks</td>
<td>1000 m/s² - 6ms</td>
<td>2000 m/s² - 6ms</td>
</tr>
<tr>
<td>Resistance to vibrations</td>
<td>200m/s² - 55 ... 2000Hz</td>
<td>300m/s² - 55 ... 2000Hz</td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>Rotor Inertia [kgm² x 10⁻⁶]</td>
<td>0.40</td>
<td>2.60</td>
</tr>
</tbody>
</table>

(1) This resolution is obtained when used with the EM-ABS-01 acquisition module.

SICK ENCODERS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BMD65</th>
<th>BMD82 - BMD170</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENB3</td>
<td>ENB4</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>SICK AG</td>
<td></td>
</tr>
<tr>
<td>Data interface</td>
<td>Hiperface</td>
<td>Hiperface</td>
</tr>
<tr>
<td>Model</td>
<td>SKS36</td>
<td>SKM36</td>
</tr>
<tr>
<td>Type</td>
<td>Single turn</td>
<td>Multi turn</td>
</tr>
<tr>
<td>Measuring principle</td>
<td>Optical</td>
<td>Optical</td>
</tr>
<tr>
<td>Power supply</td>
<td>7VDC ... 12VDC</td>
<td>7VDC ... 12VDC</td>
</tr>
<tr>
<td>Current consumption</td>
<td>60mA</td>
<td>60mA</td>
</tr>
<tr>
<td>Periods per revolution</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Position per revolution</td>
<td>4096 (12 bits)</td>
<td>4096 (12 bits)</td>
</tr>
<tr>
<td>Revolutions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20°C ... +110°C</td>
<td>-30°C ... +115°C</td>
</tr>
<tr>
<td>Max Speed [min⁻¹]</td>
<td>10000</td>
<td>12000</td>
</tr>
<tr>
<td>Resistance to shocks</td>
<td>100 g / 6 ms</td>
<td>100 g / 6 ms</td>
</tr>
<tr>
<td>Resistance to vibrations</td>
<td>50 g / 10 ... 2000 Hz</td>
<td>20 g / 10 ... 2000 Hz</td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>0.07</td>
<td>0.20</td>
</tr>
<tr>
<td>Rotor Inertia [kgm² x 10⁻⁶]</td>
<td>0.45</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Please check the compatibility with our Motion Control with our Technical team or by consulting the Motion Control catalogue.
Inductive and Capacitive encoders

The absolute inductive and capacitive encoders available in the BMD series have no integral bearing. The angular position is achieved measuring high-frequency signals for encoder exploiting the inductive measuring principle or with a holistic scanning system for encoder exploiting the capacitive principle of measurement.

HEIDENHAIN ENCODER

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BMD65 - BMD170</th>
<th>ENB8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Dr. JOHANNES HEIDENHAIN GmbH</td>
<td></td>
</tr>
<tr>
<td>Data interface</td>
<td>EnDat</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>EQ1131</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Multi turn</td>
<td></td>
</tr>
<tr>
<td>Measuring principle</td>
<td>Inductive</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>3.6VDC ... 14VDC</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>115mA (5V)</td>
<td></td>
</tr>
<tr>
<td>Periods per revolution</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Position per revolution</td>
<td>524288 (19 bits)</td>
<td></td>
</tr>
<tr>
<td>Revolutions</td>
<td>4096 (12 bits)</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40°C ... +115°C</td>
<td></td>
</tr>
<tr>
<td>Max Speed [min⁻¹]</td>
<td>12000</td>
<td></td>
</tr>
<tr>
<td>Resistance to shocks</td>
<td>2000 m/s² - 6ms</td>
<td></td>
</tr>
<tr>
<td>Resistance to vibrations</td>
<td>400m/s² - 55 ... 2000Hz</td>
<td></td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Rotor Inertia [kgm² x 10⁶]</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

SICK ENCODERS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>BMD65 - BMD170</th>
<th>ENB5</th>
<th>ENB6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>SICK AG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data interface</td>
<td>Hiperface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>SEK37</td>
<td>SEL37</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Single turn</td>
<td>Multi turn</td>
<td></td>
</tr>
<tr>
<td>Measuring principle</td>
<td>Capacitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>7VDC ... 12VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>50mA</td>
<td>50mA</td>
<td></td>
</tr>
<tr>
<td>Periods per revolution</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Position per revolution</td>
<td>512 (9 bits)</td>
<td>512 (9 bits)</td>
<td></td>
</tr>
<tr>
<td>Revolutions</td>
<td>-</td>
<td>4096 (12 bits)</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40°C ... +115°C</td>
<td>-20°C ... +115°C</td>
<td></td>
</tr>
<tr>
<td>Max Speed [min⁻¹]</td>
<td>120000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to shocks</td>
<td>100 g / 10 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to vibrations</td>
<td>50 g / 10 ... 2000 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor Inertia [kgm² x 10⁶]</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please check the compatibility with our Motion Control with our Technical team or by consulting the Motion Control catalogue.
Thermal protection

As standard, the BMD motors are equipped with an integrated PTC thermistor to protect the windings against overtemperatures exceeding the limit of the motor class F insulation. Optionally a KTY or a PT1000 sensors are available, to fit any needs for temperature feedback.

<table>
<thead>
<tr>
<th>OPTIONS</th>
<th>THERMAL PROTECTOR</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC</td>
<td>1x PTC BMD 65-102</td>
<td>The PTC thermistors is placed in contact with the motor winding. The thermistor switch temperature is in accordance with the insulation class F of the motor.</td>
</tr>
<tr>
<td></td>
<td>3x PTC BMD 118-170</td>
<td></td>
</tr>
<tr>
<td>KTY</td>
<td>Type KTY 84-130</td>
<td>A KTY silicon semi-conductor resistance sensor is placed in contact with the motor winding. The working temperature range is from 0°C to 170°C.</td>
</tr>
<tr>
<td>TC1</td>
<td>PT1000</td>
<td>A platinum resistance temperature sensor is place in contact with the motor winding. The PT1000 characteristic is in accordance with IEC 60751 : 2008, tolerance class B. The working temperature is from -40°C to 250°C.</td>
</tr>
</tbody>
</table>

Electromechanical holding brake - F24 option

An electromagnetic holding brake is available. The brake variant can be ordered by selecting the F24 value in the brake option field.

The electromechanical brake is for use as an holding brake with motor shaft stationary. Do not use it as a dynamic brake, except for emergencies such as main supply failure.

Data of the available brake for each motor size are summarized in the following table. When the motor is delivered without brake, the brake fitting is not possible.

The brake coil voltage supply must be 24V DC-voltage.
The brake option is responsible of an increment of the motor length.
Brake leads are wired in the power connector togheter with motor leads.

Please note that the brake option is not available when the “additional inertia” option is selected.

<table>
<thead>
<tr>
<th>Motor</th>
<th>Rated brake torque 20°C</th>
<th>Rated brake torque 100°C</th>
<th>Brake voltage</th>
<th>Brake current</th>
<th>Brake power 20°C</th>
<th>Inertia increase</th>
<th>Mass increase</th>
<th>Engaging time</th>
<th>Release time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_b</td>
<td>M_b</td>
<td>V_b</td>
<td>I_b</td>
<td>P_b</td>
<td>J_kg m² · 10⁴</td>
<td>m</td>
<td>t₁</td>
<td>t₂</td>
</tr>
<tr>
<td>65</td>
<td>2</td>
<td>1.8</td>
<td></td>
<td>0.46</td>
<td>11</td>
<td>0.068</td>
<td>0.2</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>82</td>
<td>4.5</td>
<td>4</td>
<td></td>
<td>0.5</td>
<td>12</td>
<td>0.18</td>
<td>0.6</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>102</td>
<td>9</td>
<td>8</td>
<td></td>
<td>0.75</td>
<td>18</td>
<td>0.54</td>
<td>1.1</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>118</td>
<td>18</td>
<td>15</td>
<td>24</td>
<td>1.0</td>
<td>24</td>
<td>1.66</td>
<td>2.2</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>145</td>
<td>18</td>
<td>15</td>
<td></td>
<td>1.0</td>
<td>24</td>
<td>1.66</td>
<td>2.6</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>170</td>
<td>36</td>
<td>32</td>
<td></td>
<td>1.1</td>
<td>26</td>
<td>5.56</td>
<td>4.5</td>
<td>22</td>
<td>90</td>
</tr>
</tbody>
</table>

Notes

₁ Time from disconnecting the current until the rated torque is attained
₂ Time from connecting the current until the torque decreases
Additional inertia feature - F1 option

BMD Permanent Magnet AC Synchronous Motor series is provided optionally with additional inertia. The BMD motors with additional inertia have higher rotor moment of inertia in comparison with basic version. Additional inertia is designed to be used in application with high load inertia. The increased rotor moment of inertia provides a comfortable control response due to “higher” inertial matching of the machine.

<table>
<thead>
<tr>
<th>MOTOR</th>
<th>INERTIA INCREASE ΔJ</th>
<th>MASS INCREASE Δm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kgm2 $\cdot 10^{-4}$</td>
<td>kg</td>
</tr>
<tr>
<td>65</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>82</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>102</td>
<td>7.5</td>
<td>1.7</td>
</tr>
<tr>
<td>118</td>
<td>16</td>
<td>3.5</td>
</tr>
<tr>
<td>145</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>170</td>
<td>70</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Forced ventilation

BMD motors size 145 and 170 can be ordered completed with additional fan unit (forced ventilation IC 416) selecting the proper designation variants (V1R, V1S, V2R, V2S). Motors originally provided with a fan unit have the power and signal connectors rotatable as per standard BMD motors (180° x 90°). Alternatively, the fan units are available as kit suitable for the retrofit of standard motors. In this case the customer has to modify the existing motor to assembly the fan unit. The fan cowl is black painted RAL 9005. Fans have metal housing and IP54 degree of protection.
Forced ventilation

KIT ORDER CODES FOR RETROFIT

To install the forced ventilation as a retrofit kit the standard BMD motor housing must be modify adding 8 threaded holes. In this configuration the motor connectors must be oriented to the drive end side and they can not rotate. Instructions for housing modifications are reported in the fan unit operation manual supplied with the kit.

For selecting the right ventilation kit refer to the following tables.

MOTOR VARIANTS

<table>
<thead>
<tr>
<th>MOTOR VARIANT</th>
<th>Fan cowl type S</th>
<th>Fan cowl type L</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD 14S 16.8</td>
<td>SEN / RES1 / RES2 / ENB1...ENB8</td>
<td>-</td>
</tr>
<tr>
<td>BMD 14S 16.8...F24/F1</td>
<td>SEN / RES1 / RES2 / ENB3...ENB6 / ENB8</td>
<td>ENB1 / ENB2 / ENB7</td>
</tr>
<tr>
<td>BMD 14S 22</td>
<td>SEN / RES1 / RES2 / ENB3...ENB6 / ENB8</td>
<td>ENB1 / ENB2 / ENB7</td>
</tr>
<tr>
<td>BMD 14S 22...F24/F1</td>
<td>-</td>
<td>SEN / RES1 / RES2 / ENB1...ENB8</td>
</tr>
<tr>
<td>BMD 170 34</td>
<td>SEN / RES1 / RES2 / ENB1...ENB8</td>
<td>-</td>
</tr>
<tr>
<td>BMD 170 34...F24/F1</td>
<td>SEN / RES1 / RES2 / ENB3...ENB6 / ENB8</td>
<td>ENB1 / ENB2 / ENB7</td>
</tr>
<tr>
<td>BMD 170 45</td>
<td>SEN / RES1 / RES2 / ENB1...ENB8</td>
<td>-</td>
</tr>
<tr>
<td>BMD 170 45...F24/F1</td>
<td>-</td>
<td>SEN / RES1 / RES2 / ENB1...ENB8</td>
</tr>
</tbody>
</table>

FAN UNIT VARIANTS AND KIT ORDER CODES

<table>
<thead>
<tr>
<th>KIT code</th>
<th>BMD size</th>
<th>Fan voltage</th>
<th>Fan cowl size</th>
<th>Connector type</th>
</tr>
</thead>
<tbody>
<tr>
<td>19MOT0001</td>
<td>BMD 170</td>
<td>24V DC</td>
<td>S</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0002</td>
<td>BMD 170</td>
<td>24V DC</td>
<td>L</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0003</td>
<td>BMD 170</td>
<td>230V AC</td>
<td>S</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0004</td>
<td>BMD 170</td>
<td>230V AC</td>
<td>L</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0005</td>
<td>BMD 170</td>
<td>24V DC</td>
<td>S</td>
<td>Rotatable</td>
</tr>
<tr>
<td>19MOT0006</td>
<td>BMD 170</td>
<td>24V DC</td>
<td>L</td>
<td>Rotatable</td>
</tr>
<tr>
<td>19MOT0007</td>
<td>BMD 170</td>
<td>230V AC</td>
<td>S</td>
<td>Rotatable</td>
</tr>
<tr>
<td>19MOT0008</td>
<td>BMD 170</td>
<td>230V AC</td>
<td>L</td>
<td>Rotatable</td>
</tr>
<tr>
<td>19MOT0009</td>
<td>BMD 14S</td>
<td>24V DC</td>
<td>S</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0010</td>
<td>BMD 14S</td>
<td>24V DC</td>
<td>L</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0011</td>
<td>BMD 14S</td>
<td>230V AC</td>
<td>S</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0012</td>
<td>BMD 14S</td>
<td>230V AC</td>
<td>L</td>
<td>Straight</td>
</tr>
<tr>
<td>19MOT0013</td>
<td>BMD 14S</td>
<td>24V DC</td>
<td>S</td>
<td>Rotatable</td>
</tr>
<tr>
<td>19MOT0014</td>
<td>BMD 14S</td>
<td>24V DC</td>
<td>L</td>
<td>Rotatable</td>
</tr>
<tr>
<td>19MOT0015</td>
<td>BMD 14S</td>
<td>230V AC</td>
<td>S</td>
<td>Rotatable</td>
</tr>
<tr>
<td>19MOT0016</td>
<td>BMD 14S</td>
<td>230V AC</td>
<td>L</td>
<td>Rotatable</td>
</tr>
</tbody>
</table>

Note

In case of retrofit, check the power cable section. It must be in accordance with the power servocables matching table present in this catalog.
Forced ventilation

FANS ELECTRICAL DATA AND CONNECTION

<table>
<thead>
<tr>
<th>FANS ELECTRICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD size</td>
</tr>
<tr>
<td>BMD 170</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BMD 145</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

ORDER CODE DESCRIPTION

- 712692054 Plug connector with pin – Clamping range: 7.5…12mm
- 712692108 Plug connector with pin – Clamping range: 4.2…6.6mm
- 612580269 Assembled cable with connector MFC 03 C1 – Length: 3m
- 612580271 Assembled cable with connector MFC 05 C1 – Length: 5m
- 612580272 Assembled cable with connector MFC 10 C1 – Length: 10m

LAYOUT OF SUPPLY CONNECTORS VXS / VXR AND PRE-ASSEMBLED CABLES

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
<th>CABLE LABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not connected</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Not connected</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Earth</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+VDC / Phase</td>
<td>Yellow-Green</td>
</tr>
<tr>
<td>5</td>
<td>- VDC / Neutral</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Not connected</td>
<td>-</td>
</tr>
</tbody>
</table>

CONNECTION ACCESSORIES

Connections

The power and feedback device connections can be made by angled rotatable receptacles connector (P1N S1N or P1 S1) or by straight turning receptacles connector (P3N S3N or P3 S3) or by 1 metre flying cable (P2, S2 or S2C).
Power connections

The 6-pin power connector of the motor with feedback includes the pins of the motor supply and the ones for the brake supply (if provided). The sensorless motor has 8-pin power connector and include also the pins for the thermal protection. Same layouts are used for motor with flying cable connection.

MOTOR WITH FEEDBACK DEVICE / BMD65 - BMD145

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable label or color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase U</td>
<td>L1 / 1 / U</td>
</tr>
<tr>
<td>2</td>
<td>Phase V</td>
<td>L2 / 2 / V</td>
</tr>
<tr>
<td>Earth - SL</td>
<td>Yellow - Green</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Brake +</td>
<td>White</td>
</tr>
<tr>
<td>5</td>
<td>Brake -</td>
<td>Black</td>
</tr>
<tr>
<td>6</td>
<td>Phase W</td>
<td>L3 / 3 / W</td>
</tr>
</tbody>
</table>

MOTOR WITH FEEDBACK DEVICE / BMD170

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable label or color</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Phase U</td>
<td>L1 / 1 / U</td>
</tr>
<tr>
<td>V</td>
<td>Phase V</td>
<td>L2 / 2 / V</td>
</tr>
<tr>
<td>W</td>
<td>Phase W</td>
<td>L3 / 3 / W</td>
</tr>
<tr>
<td>Earth - SL</td>
<td>Yellow - Green</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Brake +</td>
<td>White</td>
</tr>
<tr>
<td>-</td>
<td>Brake -</td>
<td>Black</td>
</tr>
</tbody>
</table>

SENSORLESS MOTOR / BMD65 - BMD145

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable label or color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase U</td>
<td>L1 / 1 / U</td>
</tr>
<tr>
<td>Earth - SL</td>
<td>Yellow - Green</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Phase W</td>
<td>L3 / 3 / W</td>
</tr>
<tr>
<td>4</td>
<td>Phase V</td>
<td>L2 / 2 / V</td>
</tr>
<tr>
<td>A</td>
<td>Thermal protector +</td>
<td>White / 5</td>
</tr>
<tr>
<td>B</td>
<td>Thermal protector -</td>
<td>Black / 6</td>
</tr>
<tr>
<td>C</td>
<td>Brake +</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Brake -</td>
<td></td>
</tr>
</tbody>
</table>

SENSORLESS MOTOR / BMD170

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable label or color</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Phase U</td>
<td>L1 / 1 / U</td>
</tr>
<tr>
<td>V</td>
<td>Phase V</td>
<td>L2 / 2 / V</td>
</tr>
<tr>
<td>W</td>
<td>Phase W</td>
<td>L3 / 3 / W</td>
</tr>
<tr>
<td>Earth - SL</td>
<td>Yellow - Green</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Thermal protector +</td>
<td>White / 5</td>
</tr>
<tr>
<td>2</td>
<td>Thermal protector -</td>
<td>Black / 6</td>
</tr>
<tr>
<td>+</td>
<td>Brake +</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Brake -</td>
<td></td>
</tr>
</tbody>
</table>
Signal connections

The signal connector gathers the feedback device signals and the thermal protection terminal. Each feedback device has proper signal connector layout. Variants with flying cable have different termination on the inverter feedback module side. S2 variant has lead wires with ferrules for connection to screw terminals. S2C variant has SUB-D male standard connector with layout in accordance with the Bonfiglioli interface module.

MOTOR WITH RESOLVER (RES1/RES2) / BMD65 - BMD170

Signal connector layout (S1N/S1/S3N/S3 options) Signal cable (S2 option)

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sin -</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>Sin +</td>
<td>Green</td>
</tr>
<tr>
<td>3</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>4</td>
<td>Shield cable</td>
<td>not connected</td>
</tr>
<tr>
<td>5</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>6</td>
<td>n.c.</td>
<td>Black</td>
</tr>
<tr>
<td>7</td>
<td>Exct -</td>
<td>White (0.50 mm²)</td>
</tr>
<tr>
<td>8</td>
<td>Thermal protector -</td>
<td>Brown (0.50 mm²)</td>
</tr>
<tr>
<td>9</td>
<td>Thermal protector +</td>
<td>Red</td>
</tr>
<tr>
<td>10</td>
<td>Exct +</td>
<td>Gray</td>
</tr>
<tr>
<td>11</td>
<td>Cos +</td>
<td>Rose</td>
</tr>
<tr>
<td>12</td>
<td>Cos -</td>
<td></td>
</tr>
</tbody>
</table>

MOTOR WITH ENDAT ENCODER (ENB1/ENB2/ENB8) / BMD65 - BMD170

Signal connector layout (S1N/S1/S3N/S3 options) Signal cable (S2 option)

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UP SENSOR</td>
<td>Violet</td>
</tr>
<tr>
<td>2</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>3</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>4</td>
<td>0V SENSOR</td>
<td>Yellow</td>
</tr>
<tr>
<td>5</td>
<td>Thermal protector -</td>
<td>Blue (0.50 mm²)</td>
</tr>
<tr>
<td>6</td>
<td>Thermal protector +</td>
<td>White (0.50 mm²)</td>
</tr>
<tr>
<td>7</td>
<td>UP</td>
<td>White Green</td>
</tr>
<tr>
<td>8</td>
<td>Clock +</td>
<td>Blue</td>
</tr>
<tr>
<td>9</td>
<td>Clock -</td>
<td>Black</td>
</tr>
<tr>
<td>10</td>
<td>0V</td>
<td>Brown Green</td>
</tr>
<tr>
<td>11</td>
<td>Shield cable</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>B + (1)</td>
<td>Red Black (2)</td>
</tr>
<tr>
<td>13</td>
<td>B - (1)</td>
<td>Green Black (2)</td>
</tr>
<tr>
<td>14</td>
<td>DATA +</td>
<td>Gray</td>
</tr>
<tr>
<td>15</td>
<td>A + (1)</td>
<td>Blue Black (2)</td>
</tr>
<tr>
<td>16</td>
<td>A - (2)</td>
<td>Yellow Black (2)</td>
</tr>
<tr>
<td>17</td>
<td>DATA -</td>
<td>Rose</td>
</tr>
</tbody>
</table>

Note

(1) Signals not available for encoder ENB8
(2) Wires to be cut for cable MSC - EN1 FW in case of encoder ENB8
Signal connections

MOTOR WITH HYPERFACE ENCODER (ENB3/ENB4/ENB5/ENB6) / BMD65 - BMD170

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sin +</td>
<td>Green</td>
</tr>
<tr>
<td>2</td>
<td>Sin -</td>
<td>Brown</td>
</tr>
<tr>
<td>3</td>
<td>RS485 +</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>5</td>
<td>Shield cable</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>7</td>
<td>GND (0V)</td>
<td>Black</td>
</tr>
<tr>
<td>8</td>
<td>Thermal protector -</td>
<td>White (0.50 mm²)</td>
</tr>
<tr>
<td>9</td>
<td>Thermal protector +</td>
<td>Brown (0.50 mm²)</td>
</tr>
<tr>
<td>10</td>
<td>+ Vdc</td>
<td>Red</td>
</tr>
<tr>
<td>11</td>
<td>Cos +</td>
<td>Gray</td>
</tr>
<tr>
<td>12</td>
<td>Cos -</td>
<td>Rose</td>
</tr>
<tr>
<td>13</td>
<td>RS485 -</td>
<td>Violet</td>
</tr>
<tr>
<td>14</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>15</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>16</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
<tr>
<td>17</td>
<td>n.c.</td>
<td>not connected</td>
</tr>
</tbody>
</table>

MOTOR WITH SINCOS ENCODER (ENB7) / BMD82 - BMD170

<table>
<thead>
<tr>
<th>Connector PIN number</th>
<th>Description</th>
<th>Cable color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sin +</td>
<td>Blue Black</td>
</tr>
<tr>
<td>2</td>
<td>Sin -</td>
<td>Yellow Black</td>
</tr>
<tr>
<td>3</td>
<td>R+</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>D-</td>
<td>Brown</td>
</tr>
<tr>
<td>5</td>
<td>C+</td>
<td>Gray</td>
</tr>
<tr>
<td>6</td>
<td>C-</td>
<td>Rose</td>
</tr>
<tr>
<td>7</td>
<td>0VL SENSOR</td>
<td>Yellow</td>
</tr>
<tr>
<td>8</td>
<td>Thermal protector +</td>
<td>White (0.50 mm²)</td>
</tr>
<tr>
<td>9</td>
<td>Thermal protector -</td>
<td>Blue (0.50 mm²)</td>
</tr>
<tr>
<td>10</td>
<td>Vencs</td>
<td>White Green</td>
</tr>
<tr>
<td>11</td>
<td>Cos +</td>
<td>Red Black</td>
</tr>
<tr>
<td>12</td>
<td>Cos -</td>
<td>Green Black</td>
</tr>
<tr>
<td>13</td>
<td>R -</td>
<td>Black</td>
</tr>
<tr>
<td>14</td>
<td>D +</td>
<td>Green</td>
</tr>
<tr>
<td>15</td>
<td>0VL</td>
<td>Brown Green</td>
</tr>
<tr>
<td>16</td>
<td>Venc</td>
<td>Violet</td>
</tr>
<tr>
<td>17</td>
<td>Shield cable</td>
<td>-</td>
</tr>
</tbody>
</table>
Servocables

The word servocable is referred to electrical cable connecting Bonfiglioli servomotor to respective inverter. A servocables selection is available for power supply and sensor feedback, justifying the distinction between power cables and signal cables. The power cable provides energy to motor, but also feeds the brake when present. The signal cables instead are in charge of transmission of electrical signals generated by feedback equipment installed on the motor. The same cable is also used to convey the thermal protection. All servocables are available in three different and fixed lengths (3 meters, 5 m, 10 m) offering to user an exhaustive proposal to numerous needs of configuration. Other lengths available on request.
Power servocables

Power cables are recognized by the orange color according to Desina standard. The conductors cross-section depends on the motor nominal current. In order to face different current level absorbed by different motor sizes, the power cables are executed with four conductors cross sections (1.5 mm², 2.5 mm², 4.0 mm², 10.0 mm²). On inverter side, every cable terminates with flying leads covered by ferrules for plug-in into screw terminals. On motor side the cable is equipped with metal circular plug with Speed-Tech technology for easy and sure plug-in with corresponding motor rotatable receptacle. According to page 52, power connectors have 6 pins for motor with feedback and 8 pins for sensorless motor variants.

The power cables fulfil the following technical requirements:

<table>
<thead>
<tr>
<th>TECHNICAL DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Oil resistant shielded cable for dynamic laying</td>
</tr>
<tr>
<td>Conductor</td>
<td>Tinned Stranded Cu wire complying with IEC 60228 Cl 5 / 6</td>
</tr>
<tr>
<td>Outer Sheath</td>
<td>PUR or equivalent thermoplastic material - Color: orange RAL 2003</td>
</tr>
<tr>
<td>Inner Sheath</td>
<td>PP or TPE</td>
</tr>
<tr>
<td>Tinned Cu braid Shield</td>
<td>Coverage overall screen > 80%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRICAL DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom. Volt. Power cores</td>
<td>U0/U 600/1000V</td>
</tr>
<tr>
<td>Nom. Volt. Control cores</td>
<td>U0/U 300/500V</td>
</tr>
<tr>
<td>AC Test Volt. Power cores</td>
<td>4 kV</td>
</tr>
<tr>
<td>AC Test Volt. Control cores</td>
<td>1 kV</td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>> 5 MOhm/km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MECHANICAL DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Temperature</td>
<td>-15 / +80 °C</td>
</tr>
<tr>
<td>Minimum Bending Radius</td>
<td>10 x D</td>
</tr>
<tr>
<td>N° bending cycles</td>
<td>≥ 10⁶</td>
</tr>
<tr>
<td>Max Speed</td>
<td>≥ 180 m/min</td>
</tr>
<tr>
<td>Max Acceleration</td>
<td>≥ 15 m/s²</td>
</tr>
</tbody>
</table>

STANDARD AND CERTIFICATIONS

UL/CSA, RoHS, DESINA

The cable ordering code is structured in the following mode with five fields:

<table>
<thead>
<tr>
<th>MPC</th>
<th>3</th>
<th>15</th>
<th>NB</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector size and type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>6-pin connector, motor with feedback, sizes 65 ... 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>6-pin connector, motor with feedback, size 170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>8-pin connector, sensorless motor, sizes 65 ... 145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>8-pin connector, sensorless motor, size 170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake wires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>Without brake wires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>With brake wires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase wire section</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>1.5 mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>2.5 mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>4 mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10 mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>3 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>5 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10 m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power servocables

For helping the user during servomotor-cable selection, the following matching tables are proposed. Field XX refers to the cable length (03, 05, 10), while field YY refers to the brake variant (NB, B); see previous page for fields description.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400V NOMINAL VOLTAGE – MOTOR WITH FEEDBACK

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400V NOMINAL VOLTAGE – SENSORLESS MOTOR WITH CONNECTOR

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

230V NOMINAL VOLTAGE – MOTOR WITH FEEDBACK

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

230V NOMINAL VOLTAGE – SENSORLESS MOTOR WITH CONNECTOR

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400V NOMINAL VOLTAGE – MOTOR WITH FEEDBACK AND FORCED VENTILATION

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

400V NOMINAL VOLTAGE – SENSORLESS MOTOR WITH CONNECTOR AND FORCED VENTILATION

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

230V NOMINAL VOLTAGE – MOTOR WITH FEEDBACK AND FORCED VENTILATION

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

230V NOMINAL VOLTAGE – MOTOR WITH FEEDBACK AND FORCED VENTILATION

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

230V NOMINAL VOLTAGE – MOTOR WITH FEEDBACK AND FORCED VENTILATION

<table>
<thead>
<tr>
<th>SIZE</th>
<th>STALL TORQUE (Nm)</th>
<th>NOMINAL SPEED (min⁻¹)</th>
<th>1600</th>
<th>3000</th>
<th>4500</th>
<th>5500</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Signal servocables

Signal cables are recognized by the green color according to Desina standard. The conductors number, their cross-section and their terminal type depend by the transducer typology supported by the cable. Cables are available for connection of every feedback option, either resolver and absolute encoders. On motor side, the cable is equipped with metal circular plug with Speed-Tech technology for an easy and sure plug-in with respective rotatable receptacle present on motor. On inverter side the cable end can be executed with two different terminations:
- with SUB-D male standard connector for easy and sure plug-in with corresponding SUB-D female of the module interface.
- with ferrules for connection to screw terminals of the module interface.
Connections layouts are dedicated to Bonfiglioli Vectron Active Cube interface modules.

TECHNICAL DATA

<table>
<thead>
<tr>
<th>Properties</th>
<th>Oil resistant shielded cable for dynamic laying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor</td>
<td>Tinned Stranded Cu wire complying with IEC 60228 Cl 5 / 6</td>
</tr>
<tr>
<td>Outer Sheath</td>
<td>PUR or equivalent thermoplastic material - Color: green RAL 6018</td>
</tr>
<tr>
<td>Inner Sheath</td>
<td>PP or TPE</td>
</tr>
<tr>
<td>Tinned Cu braid Shield</td>
<td>Coverage overall screen > 80%</td>
</tr>
</tbody>
</table>

ELECTRICAL DATA

- Nominal Voltage: 30 V
- AC Test Voltage: 1500 V
- Insulation Resistance: > 10 MOhm/km
- Capacitance strand/strand: < 150 pF/m

MECHANICAL DATA

- Service Temperature: -20 / +80 °C
- Minimum Bending Radius: 10 x D
- N° bending cycles: ≥ 10^6
- Max Speed: ≥ 180 m/min
- Max Acceleration: ≥ 15 m/s²

STANDARD AND CERTIFICATIONS

UL/CSA, RoHS, DESINA

The signal cables fulfill the following technical requirements:

SIGNAL SERVOCABLES

The ordering codes of the signal cables are described in the following table:

<table>
<thead>
<tr>
<th>FEEDBACK DEVICE</th>
<th>INVERTER SIDE TERMINATION</th>
<th>INVERTER FEEDBACK MODULE</th>
<th>CABLE LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES1 / RES2</td>
<td>Flying leads EM-RES-01/02 - EM-AUT-XX</td>
<td>MSC 03 RES FW</td>
<td>3 m</td>
</tr>
<tr>
<td></td>
<td>SUB-D9 EM-RES-03</td>
<td>MSC 03 RES SC</td>
<td></td>
</tr>
<tr>
<td>ENB1 / ENB2 / ENB8</td>
<td>HD SUB-D15 EM-ABS-01 - EM-AUT-XX</td>
<td>MSC 03 EN1 SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flying leads</td>
<td>MSC 03 EN1 FW</td>
<td></td>
</tr>
<tr>
<td>ENB3 ... ENB6</td>
<td>SUB-D15 EM-ABS-01 - EM-AUT-XX</td>
<td>MSC 03 EN3 SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flying leads</td>
<td>MSC 03 EN3 FW</td>
<td></td>
</tr>
<tr>
<td>ENB7</td>
<td>SUB-D15 EM-ABS-01</td>
<td>MSC 03 EN7 SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flying leads</td>
<td>MSC 03 EN7 FW</td>
<td></td>
</tr>
</tbody>
</table>
Power cable layout

Signal cable layout

<table>
<thead>
<tr>
<th>CONNECTOR SIZE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[m]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
</tr>
<tr>
<td>Power Cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 / C3</td>
<td>3 - 5 - 10 according to designation</td>
<td>150</td>
<td>76</td>
<td>28</td>
</tr>
<tr>
<td>C2 / C4</td>
<td>3 - 5 - 10 according to designation</td>
<td>93</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Signal Cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>76</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WIRE SECTION</th>
<th>BRAKE OPTION</th>
<th>E_{max}</th>
<th>FEEDBACK DESIGNATION</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm^2]</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>NB</td>
<td>11.6</td>
<td>RES</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>12.8</td>
<td>EN1 / EN7</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>NB</td>
<td>13</td>
<td>EN3</td>
<td>8.6</td>
</tr>
<tr>
<td>2.5</td>
<td>NB</td>
<td>14.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>16.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NB</td>
<td>19.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>21.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power and signal cable marking follows the label and wire colors reported in the pages 58, 59 and 60.
Servo gearheads

Motion application requires the use of precision planetary gearboxes to adapt speeds and torques, while ensuring the precision demanded by the application. Bonfiglioli Riduttori has chosen to use planetary gearboxes with the BMD range of servo motors. Bonfiglioli precision planetary gearboxes (PPG) match with BMD Permanent Magnet synchronous motors and provide industrial motion control equipment with torque multiplication and proper inertial matching. These gearheads combined with powerful drive electronics are designed for servo applications requiring highest standards in terms of dynamics, precision, robustness, durability, and long trouble-free operation.

Low backlash at a competitive price.
The LC and SL Series of planetary gearboxes are characterized by low backlash, silent running and easy motor coupling.

High precision for excellent results.
The MP Series of low backlash planetary gearboxes is characterized by a wide range of mounting configurations, silent running, and superbly easy motor coupling.

Maximum precision for highly dynamic applications.
The TQ and TQF Series of precision planetary gearboxes are designed to deliver the highest level of transmission precision. Low backlash combined with a high torsional stiffness guarantees a very performing product, for in high dynamic and reversing applications. The technical design of this gearbox also allows high axial and radial loads on the output shaft.
RATIOS FROM 3:1 TO 70:1

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MOTOR STALL TORQUE [Nm]</th>
<th>RATIOS</th>
<th>MOTOR INERTIA [kgm² x 10⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3:1</td>
<td>4:1</td>
<td>5:1</td>
</tr>
<tr>
<td>BMD 65</td>
<td>0.85</td>
<td>LC 050</td>
<td>LC 050</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>LC 070</td>
<td>LC 070</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>LC 070</td>
<td>LC 070</td>
</tr>
<tr>
<td>BMD 82</td>
<td>3.2</td>
<td>LC 070</td>
<td>LC 070</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>LC 090</td>
<td>LC 090</td>
</tr>
<tr>
<td>BMD 102</td>
<td>4.0</td>
<td>LC 090</td>
<td>LC 090</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>LC 090</td>
<td>LC 090</td>
</tr>
<tr>
<td>BMD 118</td>
<td>9.6</td>
<td>LC 090</td>
<td>LC 090</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td>LC 070</td>
<td>LC 070</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>LC 120</td>
<td>LC 120</td>
</tr>
<tr>
<td>BMD 145</td>
<td>16.8</td>
<td>LC 120</td>
<td>LC 120</td>
</tr>
<tr>
<td></td>
<td>22.0</td>
<td>LC 120</td>
<td>LC 120</td>
</tr>
<tr>
<td>BMD 170</td>
<td>34.0</td>
<td>LC 155</td>
<td>LC 155</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>LC 155</td>
<td>LC 155</td>
</tr>
</tbody>
</table>

DISTRIBUTION OF GEARBOX OUTPUT TORQUE [Nm]

<table>
<thead>
<tr>
<th>LC 050</th>
<th>LC 070</th>
<th>LC 090</th>
<th>LC 120</th>
<th>LC 155</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>18</td>
<td>37</td>
<td>95</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>43</td>
<td>110</td>
<td>300</td>
</tr>
<tr>
<td>-</td>
<td>25</td>
<td>43</td>
<td>110</td>
<td>300</td>
</tr>
</tbody>
</table>

Notes:

- Input speed lower than 3000 min⁻¹.
- Safety factor 1 < S ≤ 4.
- For any additional technical information about gearboxes selection see relevant catalogues.
BMD Servomotor / SL series Precision Planetary Flanged Gearbox combination

RATIOS FROM 3:1 TO 70:1

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MOTOR STALL TORQUE [Nm]</th>
<th>3:1</th>
<th>4:1</th>
<th>5:1</th>
<th>7:1</th>
<th>10:1</th>
<th>16:1</th>
<th>20:1</th>
<th>25:1</th>
<th>40:1</th>
<th>50:1</th>
<th>70:1</th>
<th>MOTOR INERTIA [kgm² x 10⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD 65</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SL 070</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>BMD 82</td>
<td>3.2</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMD 102</td>
<td>4.0</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td></td>
<td></td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td></td>
<td></td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMD 118</td>
<td>5.6</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 070</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 090</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td></td>
<td></td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMD 145</td>
<td>16.8</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.0</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td>SL 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION OF GEARBOX OUTPUT TORQUE [Nm]

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL 090</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>SL 120</td>
<td>95</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>95</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Notes:
- Input speed lower than 3000 min⁻¹.
- Safety factor 1 < S ≤ 4.
- For any additional technical information about gearboxes selection see relevant catalogues.
Notes:
Input speed lower than 3000 min⁻¹.
Safety factor 1 < S ≤ 4.
For any additional technical information about gearboxes selection see relevant catalogues.

BMD Servomotor / MP-TR series Precision Planetary Gearbox combination

<table>
<thead>
<tr>
<th>RATIO FROM 3:1 TO 70:1</th>
<th>TYPE</th>
<th>MOTOR STALL TORQUE [Nm]</th>
<th>RATIO</th>
<th>MOTOR INERTIA [kgm² x 10⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD 65</td>
<td>0.85</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
</tr>
<tr>
<td>BMD 82</td>
<td>3.2</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
<td>MP-TR 053</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>MP-TR 060</td>
<td>MP-TR 060</td>
<td>MP-TR 060</td>
</tr>
<tr>
<td>BMD 102</td>
<td>4.0</td>
<td>MP-TR 060</td>
<td>MP-TR 060</td>
<td>MP-TR 060</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>MP-TR 080</td>
<td>MP-TR 080</td>
<td>MP-TR 080</td>
</tr>
<tr>
<td>BMD 118</td>
<td>5.6</td>
<td>MP-TR 105</td>
<td>MP-TR 105</td>
<td>MP-TR 105</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>MP-TR 105</td>
<td>MP-TR 105</td>
<td>MP-TR 105</td>
</tr>
<tr>
<td>BMD 170</td>
<td>34.0</td>
<td>MP-TR 130</td>
<td>MP-TR 130</td>
<td>MP-TR 130</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>MP-TR 130</td>
<td>MP-TR 130</td>
<td>MP-TR 130</td>
</tr>
</tbody>
</table>

DISTRIBUTION OF GEARBOX OUTPUT TORQUE [Nm]

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-TR 053</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MP-TR 060</td>
<td>18</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>18</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>MP-TR 080</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>MP-TR 105</td>
<td>100</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>100</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>MP-TR 130</td>
<td>215</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>215</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>MP-TR 160</td>
<td>350</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>350</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>MP-TR 190</td>
<td>500</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>500</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>
BMD Servomotor / TQ series Precision Planetary Gearbox combination

RATIOS FROM 3:1 TO 70:1

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MOTOR STALL TORQUE [Nm]</th>
<th>RATIOS</th>
<th>MOTOR INERTIA [kgm² x 10⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3:1</td>
<td>4:1</td>
<td>5:1</td>
</tr>
<tr>
<td>BMD 65</td>
<td>0,85</td>
<td></td>
<td>TQ 060</td>
</tr>
<tr>
<td></td>
<td>1,7</td>
<td>TQ 060</td>
<td>TQ 060</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>TQ 060</td>
<td>TQ 060</td>
</tr>
<tr>
<td>BMD 82</td>
<td>3,2</td>
<td>TQ 070</td>
<td>TQ 070</td>
</tr>
<tr>
<td></td>
<td>4,4</td>
<td>TQ 070</td>
<td>TQ 070</td>
</tr>
<tr>
<td>BMD 102</td>
<td>4,0</td>
<td>TQ 070</td>
<td>TQ 070</td>
</tr>
<tr>
<td></td>
<td>7,2</td>
<td>TQ 070</td>
<td>TQ 070</td>
</tr>
<tr>
<td></td>
<td>9,6</td>
<td>TQ 070</td>
<td>TQ 090</td>
</tr>
<tr>
<td>BMD 118</td>
<td>5,6</td>
<td>TQ 070</td>
<td>TQ 070</td>
</tr>
<tr>
<td></td>
<td>10,2</td>
<td>TQ 070</td>
<td>TQ 070</td>
</tr>
<tr>
<td></td>
<td>14,0</td>
<td>TQ 070</td>
<td>TQ 090</td>
</tr>
<tr>
<td>BMD 145</td>
<td>16,8</td>
<td>TQ 090</td>
<td>TQ 090</td>
</tr>
<tr>
<td></td>
<td>22,0</td>
<td>TQ 090</td>
<td>TQ 090</td>
</tr>
<tr>
<td>BMD 170</td>
<td>34,0</td>
<td>TQ 090</td>
<td>TQ 090</td>
</tr>
<tr>
<td></td>
<td>45,0</td>
<td>TQ 130</td>
<td>TQ 130</td>
</tr>
</tbody>
</table>

DISTRIBUTION OF GEARBOX OUTPUT TORQUE [Nm]

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>40</th>
<th>50</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQ 060</td>
<td>21</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>TQ 070</td>
<td>45</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>40</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>TQ 090</td>
<td>130</td>
<td>200</td>
<td>180</td>
<td>160</td>
<td>110</td>
<td>200</td>
<td>180</td>
<td>180</td>
<td>200</td>
<td>180</td>
<td>160</td>
</tr>
<tr>
<td>TQ 130</td>
<td>260</td>
<td>400</td>
<td>400</td>
<td>360</td>
<td>280</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>360</td>
</tr>
<tr>
<td>TQ 160</td>
<td>530</td>
<td>800</td>
<td>800</td>
<td>750</td>
<td>550</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>750</td>
</tr>
</tbody>
</table>

Notes:

- Input speed lower than 3000 min⁻¹.
- Safety factor 1 < S ≤ 4.
- For any additional technical information about gearboxes selection see relevant catalogues.
BMD Servomotor / TQF series Precision Planetary Flanged Gearbox combination

RATIOS FROM 4:1 TO 70:1

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MOTOR STALL TORQUE</th>
<th>TQF 4:1</th>
<th>TQF 5:1</th>
<th>TQF 7:1</th>
<th>TQF 10:1</th>
<th>TQF 16:1</th>
<th>TQF 20:1</th>
<th>TQF 25:1</th>
<th>TQF 40:1</th>
<th>TQF 50:1</th>
<th>TQF 70:1</th>
<th>MOTOR INERTIA [kgm² x 10⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD 65</td>
<td>0,85</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>1,7</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 060</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>0,06</td>
</tr>
<tr>
<td>BMD 82</td>
<td>3,2</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 090</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td>4,4</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 090</td>
<td>0,17</td>
</tr>
<tr>
<td>BMD 102</td>
<td>4,0</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>0,19</td>
</tr>
<tr>
<td></td>
<td>7,2</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>0,34</td>
</tr>
<tr>
<td></td>
<td>9,6</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>TQF 130</td>
<td>0,47</td>
</tr>
<tr>
<td>BMD 118</td>
<td>5,6</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 090</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>10,2</td>
<td>TQF 070</td>
<td>TQF 070</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>TQF 130</td>
<td>TQF 130</td>
<td>TQF 130</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>14,0</td>
<td>TQF 070</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>0,99</td>
</tr>
<tr>
<td>BMD 145</td>
<td>16,8</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>1,28</td>
</tr>
<tr>
<td></td>
<td>22,0</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>TQF 160</td>
<td>1,76</td>
</tr>
<tr>
<td>BMD 170</td>
<td>34,0</td>
<td>TQF 090</td>
<td>TQF 090</td>
<td>TQF 130</td>
<td>TQF 160</td>
<td>3,38</td>
</tr>
<tr>
<td></td>
<td>45,0</td>
<td>TQF 130</td>
<td>TQF 130</td>
<td>TQF 130</td>
<td>TQF 160</td>
<td>4,75</td>
</tr>
</tbody>
</table>

DISTRIBUTION OF GEARBOX OUTPUT TORQUE [Nm]

<table>
<thead>
<tr>
<th>TQF 060</th>
<th>TQF 070</th>
<th>TQF 090</th>
<th>TQF 130</th>
<th>TQF 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>60</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>200</td>
<td>180</td>
<td>160</td>
<td>110</td>
<td>200</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>360</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>800</td>
<td>800</td>
<td>750</td>
<td>550</td>
<td>800</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>60</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>200</td>
<td>180</td>
<td>160</td>
<td>110</td>
<td>200</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>360</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>800</td>
<td>800</td>
<td>750</td>
<td>550</td>
<td>800</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>750</td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>750</td>
</tr>
</tbody>
</table>

Notes:
- *Input speed lower than 3000 min⁻¹.*
- *Safety factor 1 < S ≤ 4.*
- *For any additional technical information about gearboxes selection see relevant catalogues.*
Global Presence

We Are a Global Company

Thanks to an international network of sales branches and closely interconnecting production plants, we can guarantee the same high standards of Bonfiglioli quality anywhere at any given time. Aware that our direct presence in local markets is the key to long-lasting success, our family includes 21 sales branches, 14 production plants and more than 500 distributors around the world.

Our organization is always close by, offering complete and efficient solutions and supporting our customers with dedicated services, such as co-engineering or after-sales assistance.

With a broad and extensive presence in 22 countries and 5 continents, Bonfiglioli is one of the international market leaders. Our organization makes the most of geographic proximity to offer complete solutions combining efficiency and competence.
Bonfiglioli Worldwide Locations

Australia
Bonfiglioli Transmission (Aust.) Pty Ltd
2, Cox Place Glendenning NSW 2761
Locked Bag 1000 Plumpton NSW 2761
Tel. +61 2 8811 8000

Brazil
Bonfiglioli Redutores do Brasil Ltda
Travessa Cláudio Armando 171 - Bloco 3 - CEP 09861-730
Bairro Assuncão - São Bernardo do Campo - São Paulo
Tel. +55 11 4344 2322

China
Bonfiglioli Drives (Shanghai) Co. Ltd.
#68, Hui-Lian Road, QingPu District, 207107 Shanghai
Tel. +86 21 6700 2000

France
Bonfiglioli Transmission s.a.
14 Rue Eugène Pottier
Zone Industrielle de Moimont II - 95670 Marly la Ville
Tel. +33 1 344 746 10

Germany
Bonfiglioli Deutschland GmbH
Sperrerweg 12 - 41686 Neuss
Tel. +49 0 2131 2988 0

Bonfiglioli Vectron GmbH
Europark Fichtenhain B6 - 47807 Krefeld
Tel. +49 0 2151 8396 0

O&K Antriebstechnik GmbH
Ruhrallee B 12 - 45525 Hattingen
Tel. +49 0 2324 2050 1

India
Bonfiglioli Transmission Pvt Ltd
Plot No. AC7-AC11, SIDCO Industrial Estate, Thirumudivakkam - 600 044 Chennai
Tel. +91 44 2478 1035

Industrial
Survey No. 528, Porambakkam High Road,
Mannur Village, Sirperambudur Taluk - 602 105 Chennai
Tel. +91 44 6710 3800

Plot No. A-95, Phase IV, MIDC Chakan, Village Nighojne
Pune, Maharashtra - 410 501

Italy
Bonfiglioli Riduttori S.p.A.
Headquarters
Via Giovanni XXIII, 7/A - 40012 Lippo di Calderara di Reno
Tel. +39 051 647 3111

Mobile, Wind
Via Enrico Mattei, 12 Z.I. Villa Selva - 47100 Forli
Tel. +39 0543 789 111

Industrial
Via Bazzane, 33/A - 40012 Calderara di Reno
Tel. +39 051 647 3111

Via Trinità, 1 - 40058 Vignola
Tel. +39 059 768 511

Bonfiglioli Italia S.p.A
Via Sandro Pertini lotto 7b - 20080 Carpi
Tel. +39 02 985081

Bonfiglioli Mechatronic Research S.p.A
Via F. Zeni 8 - 38068 Rovereto
Tel. +39 0464 4434/35/36

New Zealand
Bonfiglioli Transmission (Aust.) Pty Ltd
88 Hastie Avenue, Mangere Bridge, 2022 Auckland
PO Box 11795, Ellerslie
Tel. +64 09 634 6441

Singapore
Bonfiglioli South East Asia Pte Ltd
8 Boon Lay Way, #04-09, 8@ Tadhehub 21, Singapore 609964
Tel. +65 6268 9869

Slovakia
Bonfiglioli Slovakia s.r.o.
Robotnicka 2129
Považská Bystrica, 01701 Slovakia
Tel. +421 42 430 75 64

South Africa
Bonfiglioli South Africa Pty Ltd
55 Galaxy Avenue, Linbro Business Park - Sandton
Tel. +27 11 608 2030

Spain
Tecnotrans Bonfiglioli, S.A.
Pol. Ind. Zona Franca, Sector C, Calle F, nº 6
08040 Barcelona
Tel. +34 93 447 84 00

Turkey
Bonfiglioli Turkey Jsc
Ataturk Organize Sanayi Bölgesi, 10007 Sk. No. 30
Ataturk Organize Sanayi Bölgesi, 35620 Çiğli - Izmir
Tel. +90 0 232 328 22 77

United Kingdom
Bonfiglioli UK Ltd.
1 Calver Quay, Winwick
Warrington - WA2 8UD
Tel. +44 1925 825667

USA
Bonfiglioli USA Inc.
3541 Hargrave Drive
Hebron, Kentucky 40448
Tel. +1 859 334 3333

Vietnam
Bonfiglioli Vietnam Ltd
Lot C-9D-CN My Phuoc Industrial Park 3
Ben Cat - Binh Duong Province
Tel. +84 650 3577411
We have a relentless commitment to excellence, innovation and sustainability. Our team creates, distributes and services world-class power transmission and drive solutions to keep the world in motion.